The Effect of Polar Gaps on the Solutions of Gradiometric Boundary Value Problems

Open access

The Effect of Polar Gaps on the Solutions of Gradiometric Boundary Value Problems

The lack of satellite gravity gradiometric data, due to inclined orbit, in the Polar Regions influences the geopotential coefficients obtained from the solutions of gradiometric boundary value problems. This paper investigates the polar gaps effect on these solutions and it presents that the near zero-, first- and second-order geopotential coefficients are weakly determined by the vertical-vertical, vertical-horizontal and horizontal solutions, respectively. Also it shows that the vertical-horizontal solution is more sensitive to the lack of data than the other solutions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Albertella A. Migliaccio F. and Sansó F. (2002) GOCE: The Earth Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy Vol. 83 1-15.

  • Balmino G. Perosanz F. Rummel R. Sneeuw N. Sünkel H. and Woodworth P. (1998) European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document ESA ESD-MAG-REP-CON-001.

  • Balmino G. Perosanz F. Rummel R. Sneeuw N. and Suenkel H. (2001) CHAMP GRACE and GOCE: Mission Concepts and Simulations. Boll. Geof. Teor. Appl. Vol. 40 No. 3-4 309-320.

  • ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission ESA SP-1233(1) Report for mission selection of the four candidate earth explorer missions. ESA Publications Division pp. 217 July 1999.

  • Eshagh M. (2009) On satellite gravity gradiometry Doctoral thesis in geodesy Royal Institute of Technology (KTH) Stockholm Sweden.

  • Heiskanen W. and Moritz H. (1967) Physical Geodesy. W.H Freeman and company San Fransisco and London.

  • Hwang C. (1991) Orthogonal functions over the oceans and applications to the determination of orbit error geoid and sea surface topography from satellite altimetry PhD dissertation 229 pp.

  • Hwang C. (1993) Fast algorithm for the formulation of normal equations in a least-squares spherical harmonic analysis by FFT Manuscripta Geodaetica. 62:46-52.

  • Koop R. (1993) Global gravity field modeling using satellite gravity gradiometry. Publ Geodesy New series No. 38. Netherland Geodetic Commission Delft.

  • Lemoine F.G. Kenyon S.C. Factor J.K. Trimmer R.G. Pavlis N.K. Chinn D.S. Cox C.M. Klosko S.M. Luthcke S.B. Torrence M.H. Wang Y.M. Williamson R.G. Pavlis E.C. Rapp R.H. and Olson T.R. (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96_NASA/TP-1998-206861. Goddard Space Flight Center Greenbelt

  • Martinec Z. (2003) Green's function solution to spherical gradiometric boundary-value problems Journal of Geodesy77:41-49.

  • Metzler B. and Pail R. (2005) GOCE data processing: the spherical cap regularization approach Studia Geophysica et Geodaetica49: 441-462.

  • Pail R. Plank G. and Schuh W.D. (2001) Spatially restricted data distributions on the sphere: the method of orthonormalized functions and applications Journal of Geodesy. 75:44-56.

  • Reigber C. Schwintzer P. and Lühr H. (1999) The CHAMP geopotential mission Boll. Geof. Teor. Appl. Vol. 40 285-289.

  • Reigber Ch. Jochmann H. Wünsch J. Petrovic S. Schwintzer P. Barthelmes F. Neumayer K.-H. König R. Förste Ch. Balmino G. Biancale R. Lemoine J.-M. Loyer S. and Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber Ch. Lühr H. Schwintzer P. Wickert J. eds. Earth Observation with CHAMP - Results from Three Years in Orbit Springer Berlin 25-30.

  • Rudolph S. Kusche J. and Ilk K. H. (2002) Investigations on the polar gap problem in ESA's gravity field and steady-state ocean circulation explorer mission (GOCE) Journal of Geodynamics33:65-74.

  • Rummel R. Sanso F. Gelderen M. Koop R. Schrama E. Brovelli M. Migiliaccio F. and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publ Geodesy New Series No. 39 Netherlands Geodetic Commission Delft.

  • Siemes C. Schuh W.D. Cai J. Sneeuw N. and Baur O. (2007) GOCE data processing: the numerical challenge of data gaps Satus sem. observation of system Earth from space geotechnologien science report 11 p. 99-105 Munchen Germany.

  • Simons F. J. and Dahlen F. A. (2006) Spherical Slepian functions and the polar gap in geodesy Geophysical Journal International166:1039-1061.

  • Sneeuw N. and van Gelderen M. (1997) The polar gaps In Lecture notes in Earth sciences geodetic boundary value problems in view of the one centimeter geoid Lecture notes in Earth Sciences eds. Sanso F and Rummel R 2003 559-568. Springer-Verlag

  • Tapley B. Ries J. Bettadpur S. Chambers D. Cheng M. Condi F. Gunter B. Kang Z. Nagel P. Pastor R. Pekker T. Poole S. and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy Vol. 79 467-478.

  • Tscherning C.C. Forsberg R. Albertella A. Migliaccio F. and Sanso F. (2000) The polar gap problem Space-wise approaches to gravity field determination in Polar areas Eötvös to mGal Finsal report 10 April 2000 Suenkel H. (Ed.) p. 331-336. Study team 2 UCPH POLIMI http://www.gfy.ku.dk/~cct/publ_cct/cct1600.pdf

  • Tscherning C. C. (2001) Covering the GOCE mission polar data gaps using gradients and ground gravity In Proc. International GOCE user workshop ESTEC 23-24 April 2001 p. 105-110. ESA WPP-188.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 93 1
PDF Downloads 64 49 1