Simplification of Geopotential Perturbing Force Acting on A Satellite

Open access

Simplification of Geopotential Perturbing Force Acting on A Satellite

One of the aspects of geopotential models is orbit integration of satellites. The geopotential acceleration has the largest influence on a satellite with respect to the other perturbing forces. The equation of motion of satellites is a second-order vector differential equation. These equations are further simplified and developed in this study based on the geopotential force. This new expression is much simpler than the traditional one as it does not derivatives of the associated Legendre functions and the transformations are included in the equations. The maximum degree and order of the geopotential harmonic expansion must be selected prior to the orbit integration purposes. The values of the maximum degree and order of these coefficients depend directly on the satellite's altitude. In this article, behaviour of orbital elements of recent geopotential satellites, such as CHAMP, GRACE and GOCE is considered with respect to the different degree and order of geopotential coefficients. In this case, the maximum degree 116, 109 and 175 were derived for the Earth gravitational field in short arc orbit integration of the CHAMP, GRACE and GOCE, respectively considering millimeter level in perturbations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Albertella A. Migliaccio F. and Sanso F. (2002) GOCE: The Earth Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy Vol. 83 1-15.

  • Babolian E. and Malek Nejad K. (1994) Numerical computations University of Elm va San'at publication Tehran Iran.

  • Balmino G. Perosanz F. Rummel R. Sneeuw N. Sunkel H. and Woodworth P. (1998) European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document ESA ESD-MAG-REP-CON-001.

  • Balmino G. Perosanz F. Rummel R. Sneeuw N. and Sunkel H. (2001) CHAMP GRACE and GOCE: Mission Concepts and Simulations. Boll. Geof. Teor. Appl. Vol. 40 No. 3-4 309-320.

  • ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission ESA SP-1233(1) Report for mission selection of the four candidate earth explorer missions. ESA Publications Division pp. 217 July 1999.

  • Eshagh M. (2003a) Precise orbit determination of a low Earth orbiting satellite MSc thesis K.N. Toosi University of Technology Tehran Iran.

  • Eshagh M. (2003b) Consideration of the effect of Gravitational and non-gravitational forces acting on a low Earth orbiting satellite paper to be presented in 11-th National Iranian Geophysical Conference 1-3 December National Geological Center Tehran Iran.

  • Eshagh M. (2005) Step variable numerical orbit integration of a low Earth orbiting satellite Journal of the Earth & Space Physics Vol. 31 No. 1 1-12.

  • Eshagh M. and Najafi Alamdari M. (2005a) Investigation of orbital perturbations of a low Earth orbiting (LEO) satellite paper to be presented in NATM June 27-29 Institute of Navigation ION 61 St. Cambridge Massachusetts United States of America.

  • Eshagh M. and Najafi-Alamdari M. (2005b) Numerical orbit integration of a low Earth orbiting satellite paper to be presented in European navigation conference GNSS 2005 German Institute of Navigation Muenchen Germany.

  • Eshagh M. and Najafi-Alamdari M. (2006) Comparison of different numerical integration methods of orbit integration Journal of the Earth & Space Physics. Vol. 33 No. 1 41-57. (in Persian)

  • Eshagh M. and Najafi-Alamdari M. (2007) Perturbations in orbital elements of a low Earth orbiting satellite Journal of the Earth & Space Physics. Vol. 33 No. 1 1-12.

  • Eshagh M. (2008a) Non-singular expression for the vector and gradient tensor of gravitation in a geocentric spherical frame Computers & Geosciences Vol. 34 1762-1768.

  • Eshagh M. (2009a) Impact of vectorization in global synthesis and analysis in gradiometry Acta Geodaetica et Geophysica Hungarica (Accepted)

  • Eshagh M. (2009b) Orbit integration in non-inertial frames Journal of the Earth & Space Physics. (Accepted)

  • Heiskanen W.A. and Moritz H. (1967) Physical geodesy W.H. Freeman and Company

  • Hwang C. and Lin J.M. (1998) Fast integration of low orbiter's trajectory perturbed by the earth's non-sphericity Journal of Geodesy Vol. 72 578-585

  • Ilk K.H. (1983) Ein eitrag zur Dynamik ausgedehnter Korper-Gravitationswechselwirkung. Deutsche Geodatische Kommission. Reihe C Heft Nr. 288 Munchen 181 pp.

  • Kaula W. (1966) Theory of satellite geodesy Blaisdell Waltheim

  • Keller W. and Sharifi M.A. (2005) Satellite gradiometry using a satellite pair. Journal of Geodesy Vol. 78 544-557

  • Lemoine F.G. Kenyon S.C. Factor J.K. Trimmer R.G. Pavlis N.K. Chinn D.S. Cox C.M. Klosko S.M. Luthcke S.B. Torrence M.H. Wang Y.M. Williamson R.G. Pavlis E.C. Rapp R.H. and Olson T.R. (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96 NASA/TP-1998-206861. Goddard Space Flight Center Greenbelt

  • Parrot D. (1989) Short arc orbit improvement for GPS satellites MSc thesis Department of Surveying Engineering University of New Brunswick Canada.

  • Reigber C. Schwintzer P. and Luhr H. (1999) The CHAMP geopotential mission Boll. Geof. Teor. Appl. Vol. 40 285-289.

  • Reigber Ch. Jochmann H. Wunsch J. Petrovic S. Schwintzer P. Barthelmes F. Neumayer K.-H. Konig R. Forste Ch. Balmino G. Biancale R. Lemoine J.-M. Loyer S. and Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber Ch. Luhr H. Schwintzer P. Wickert J. (eds.) Earth Observation with CHAMP - Results from Three Years in Orbit Springer Berlin 25-30.

  • Rim H.J. and Schutz B.E. (2001) Precision orbit determination (POD) Geoscience laser and altimeter satellite system University of Texas United States of America.

  • Rummel R. Sanso F. Gelderen M. Koop R. Schrama E. Brovelli M. Migiliaccio F. and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publ Geodesy New Series No. 39 Netherlands Geodetic Commission Delft

  • Santos M.C. (1994) On real time orbit improvement for GPS satellites Ph.D thesis Department of Geodesy and Geomatics Engineering University of New Brunswick Canada.

  • Sharifi M.A. (2006) Satellite to satellite tracking in the space-wise approach PhD dissertation Geodatisches Institut der Universitat Stuttgart.

  • Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy Manuscripta Geodaetica Vol. 17 117-123.

  • Su H. (2000) Orbit determination of IGSO GEO and MEO satellites Ph.D thesis Department of Geodesy University of Bundeswehr Munchen Germany

  • Tapley B. Ries J. Bettadpur S. Chambers D. Cheng M. Condi F. Gunter B. Kang Z. Nagel P. Pastor R. Pekker T. Poole S. and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy Vol. 79 467-478.

  • Visser P. (1992) The use of satellites in gravity field determination and adjustment PhD dissertation University of Delft

  • Wolf R. (2000) Satellite orbit and ephemeris determination using inter satellite links Ph.D thesis Department of Geodesy University of Bundeswehr Munchen Germany.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 109 1
PDF Downloads 71 59 0