The Lambda Method for the GNSS Compass

Open access

The Lambda Method for the GNSS Compass

Global Navigation Satellite System carrier phase ambiguity resolution is the key to high precision positioning and attitude determination. In this contribution we consider the GNSS compass model. We derive the integer least-squares estimators and discuss the various steps involved in the ambiguity resolution process. This includes the method that has successfully been used in (Park and Teunissen, 2003). We emphasize the unaided, single frequency, single epoch case, since this is considered the most challenging mode of GNSS attitude determination.

Bjork, A. (1996): Numerical methods for least squares problems, SIAM.

Boon, F., B. Ambrosius (1997): Results of real-time applications of the LAMBDA method in GPS based aircraft landings. Proceedings KIS97, pp. 339-345.

Cox, D.B. and J.D.W. Brading (1999): Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft. Proc ION NTM 99, pp. 739-745.

de Jonge P.J., C.C.J.M. Tiberius (1996a): The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre, LGR-Series No. 12.

de Jonge, P.J., C.C.J.M. Tiberius (1996b): Integer estimation with the LAMBDA method. Proceedings IAG Symposium No. 115, 'GPS trends in terrestrial, airborne and spaceborne applications', G. Beutler et al. (eds), Springer Verlag, pp. 280-284.

de Jonge, P.J., C.C.J.M. Tiberius, P.J.G. Teunissen (1996): Computational aspects of the LAMBDA method for GPS ambiguity resolution. Proceedings ION GPS-96, pp. 935-944.

Furuno (2003): Furuno's high-grade satellite compass SC-110. www.furuno.co.jp.

Gander, W (1981): Least squares with a quadratic constraint. Numer. Math., 36, 291-307.

Golub, G.H., C.F. Van Loan (1989): Matrix Computations, 2nd edition, The John Hopkins University Press.

Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins (1997): Global Positioning System: Theory and Practice. 4th edition. Springer Verlag.

Leick, A. (1995): GPS Satellite Surveying. 2nd edition, John Wiley, New York.

Misra, P., P. Enge (2006): Global Positioning System: Signals, Measurements and Performance. 2nd edition, Ganga-Jamuna Press.

Moon, Y., S. Verhagen (2006): Integer ambiguity estimation and validation in attitude determination environments. Proc ION-GPS 2006.

Park, C., P.J.G. Teunissen (2003): A new carrier phase ambiguity estimation for GNSS attitude determination systems. Proc. Int. GPS/GNSS Symp., Tokyo, pp. 283-290.

Parkinson, B., J.J. Spilker (eds) (1996): GPS: Theory and Applications, Vols 1 and 2, AIAA, Washington DC.

Peng, H.M., F.R. Chang, L.S. Wang (1999): Attitude determination using GPS carrier phase and compass data. Proc ION NTM 99, pp. 727-732.

Simsky, A., L. Vander Kuylen, F. Boon (2005): Single-board attitude determination system based on the PolaRx2@GPS receiver. Proc ENC GNSS 2005, Munich, Germany, 19-22 july.

Strang, G., K. Borre (1997): Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge Press.

Teunissen, P.J.G., A. Kleusberg (eds) (1998): GPS for Geodesy, 2nd enlarged edition, Springer Verlag.

Teunissen, P.J.G. (1993): Least-squares estimation of the integer GPS ambiguities. Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China, August 1993. Also in: LGR Series, No. 6, Delft Geodetic Computing Centre.

Teunissen, P.J.G. (1995): The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70: 65-82.

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

Journal Information


CiteScore 2017: 0.71

SCImago Journal Rank (SJR) 2017: 0.302
Source Normalized Impact per Paper (SNIP) 2017: 0.703

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 262 35
PDF Downloads 163 162 30