Open access


Energy variety of amaranth (Amaranthus spp.) was grown in large-scale trials in order to verify the capability of its cultivation and use as a renewable energy source in a biogas plant. The possibility of biogas production using anaerobic co-fermentation of manure and amaranth silage was verified in the experimental horizontal fermentor of 5 m3 volume, working at mesophilic conditions of 38-40 °C. The goal of the work was also to identify the optimum conditions for growth, harvesting and preservation of amaranth biomass, to optimize biogas production process, and to test the residual slurry from digestion process as a high quality organic fertilizer. The average yield of green amaranth biomass was 51.66 t.ha-1 with dry matter content of 37%. Based on the reached results it can be concluded that amaranth silage, solely or together with another organic materials of agricultural origin, is a suitable raw material for biogas production.

BALODIS, O. - BARTUŠEVICS, J. - GAILE, Z. 2011. Biomass yield of different plants for biogas production. In: Proc. 8th Int. Sci. Pract. Conf. Environment, Technology, Resources, Publisher Rézeknes Augstskola, Rézekne, RA Izdevnieciba, Latvija, vol. 1, 2011. pp. 238-245.

GADUŠ, J. - GIERTL,T. - JANČO, Š. - KOŠÍK, L. 2011. Possibilities of biogas production optimizing. Košice : Trans. Univ., 2011, pp. 123-130.

JAMRIŠKA, P. 1996. The influence of the variety on seed yield of amaranth (Amaranthus sp.). In: Rostlinná výroba, 1996, no. 42, pp. 109-114.

LIU, F. - STUTZEL, H. 2004. Biomas partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. In: Sci. Horticul., 2004, no. 102, pp.15-27.

MAST, B. - GRAEFF HONNINGER, S. - CLAUPEIN, W. 2012. Evaluation of Carabid Beetle Diversity in Different Bioenergy Cropping Systems. In: Sustainable Agriculture Research, 2012, no. 1, pp. 127-140.

MOCKAITIS, G. 2006. Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. In: J. Environ. Manag., 2006, no. 79, pp. 198-206.

MURSEC, B. - VINDIS, P. - JANZEKOVIC, M. - BRUS, M. - CUS, F. 2009. Analysis of different substrates for processing into biogas. In: JAMME, 2009, no. 37, pp. 652-659.

OFITSEROV , E. N. 2001. Amaranth: Perspective raw material for food-processing and pharmaceutical industry. In: Chem. Comput. Simulation. Butlerov Communications, 2001, no. 2, pp. 1-4.

POSPIŠIL, R. - REŽO, L. 2011. Effect of fertilization by digestate after biogas output on dry mass production. In: Pestovanie a využitie láskavca (Amaranthus L.) a iných plodín na energetické účely : zborník vedeckých prác. Nitra : SUA, 2011, pp. 169-173. ISBN 978-80-552-0561-8.

SITKEY, V. - KLISKÝ, Ľ. 2011. Cultivation of amaranth for energy purposes. In Pestovanie a využitie láskavca (Amaranthus L.) a iných plodín na energetické účely: zborník vedeckých prác. Nitra : SUA, 2011, pp. 70-75. ISBN 978-80-552-0561-8. SRAVANTHI, V. - BEGUM, H. - SUNIL, N. - REDDY, M. T. 2012. Variance component analysis for grain yield and agro-economic traits in grain amaranths (Amaranthus spp.). In Adv. Agric. Sci. Eng. Res., 2012, no. 2, pp. 233-244.

VÍGLASKÝ, J. - ANDREJČÁK, I. - HÚSKA, J. - SUCHOMEL, J. 2009. Amaranth (Amarantus L.) is a potential source of raw material for biofuels production. In: Agron. Res., 2009, no. 7, pp. 865-873.

Acta Regionalia et Environmentalica

The Journal of Slovak University of Agriculture in Nitra

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 18
PDF Downloads 33 33 2