Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries

Open access


The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD). The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS) surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.

[1] Mahan J.R.: Radiation Heat Transfer: A Statistical Approach. JohnWiley & Sons, New York 2002.

[2] Modest M.F.: Radiative Heat Transfer, 2nd Edn. Academic Press, 2003.

[3] Zeeb C.N., Burns P.J., Branner K., Dolaghan J.: User’s manual for MONT3D-Vers. 2.4. Department of Mechanical Engineering. Colorado State University, Fort Collins 1999.

[4] OpenFOAM. www.openfoam.com.

[5] Fujimoto A.: Accelerated Ray Tracing. In: Proc. Computer Graphics, Tokyo 1985, 41-65.

[6] Fujimoto A., Tanaka T., Iwata K.: ARTS: Accelerated Ray-Tracing System. IEEE Comput. Graph. 6(1986), 4, 16-26.

[7] Amanatides J., Woo A.: A Fast Voxel Traversal Algorithm for Ray Tracing. In: Proc. Eurographics Conf., 1987.

[8] Węcel G.: Mathematical Modelling of Coupled Radiative and Convective Heat Transfer. PhD. thesis. Silesian UT, Institute of Thermal Technology, Gliwice 2003.

[9] Białecki R.A., Węcel G.: Solution of conjugate radiation convection problems by a BEM FVM technique. J. Quant. Spectrosc. Radiat. Transf. 84(2004), 539-550.

[10] Zeeb C.N., Dolaghan J.S., Burns P.J.: An efficient Monte Carlo particle tracing algorithm for large, arbitrary geometries. Numer. Heat Tr. B-FUND 39(2001), 4, 325-344.

[11] Mazumder S.: Methods to accelerate ray tracing in the Monte Carlo Method for surface-to-surface radiation transport. J. Heat Transf. 128(2006), 9, 945-952.

[12] Glassner A.S.: Space subdivision for fast ray tracing. IEEE Comput. Graph. 4(1984), 10, 15-22.

[13] Jansen F. W.: Data structures for ray tracing. In: (L.R.A. Kessener et al., Eds.) Data structures for raster graphics. Springer-Verlag, Berlin 1986, 57-73.

[14] Piegl L., Tiller W.: The NURBS Book, Monographs in Visual Communication, 2nd Edn. Springer-Verlag, Berlin Heidelberg 1997.

[15] Farin G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press Inc., New York 1990.

[16] Pabst H.F., Springer J.P., Schollmeyer A., Lenhart R., Lessig C., Froehlich B.: Ray casting of trimmed NURBS surfaces on the GPU. In: Proc. Interactive Ray Tracing 2006, IEEE Symposium, 2006, 151-160.

[17] Whitted T.: An improved illumination model for shaded display. Commun. ACM. 23(1980), 6, 343-349.

[18] Rubin S.M., Whitted T.: A 3-dimensional representation for fast rendering of complex scenes. Comput. Graphics 14(1980), 3, 110-116.

[19] Toth D.L.: On ray tracing parametric surfaces. Comput. Graphics 19(1985), 3, 171-179 (SIGGRAPH ’85 Proc.).

[20] Martin W., Cohen E., Fish R., Shirley P.: Practical ray tracing of trimmed NURBS surfaces. J. Graph. Tools 5(2000), 1, 27-52.

[21] Geimer M., Abert O.P.: Interactive ray tracing of trimmed bicubic Bezier surfaces without triangulation. In: Proc. 13th Int. Conf. in Central Europe on Computer Graphics, Visualizaction and Computer Vision WSCG 2005, 71-78.

[22] Abert O.P., Geimer M., Muller S.: Direct and fast ray tracing of NURBS surfaces. In: Proc. Interactive Ray Tracing 2006, IEEE Symposium, 2006, 161-168.

[23] Kajiya J.T.: Ray tracing parametric patches. Comput. Graphics 16(1982), 3, 245-254 (SIGGRAPH ’82 Proc.).

[24] Nishita T., Sederberg T.W., Kakimoto M.: Ray tracing trimmed rational surface patches. Comput. Graphics 24(1990), 4, 337-345.

[25] Efremov A., Havran V., Seidel H. P.: Robust and numerically stable Bezier clipping method for ray tracing NURBS surfaces. In: Proc. 21st Spring Conf. on Computer Graphics SCCG’05, 2005, 127-135.

[26] Wang S. W., Shih Z. C., Chang R. C.: An efficient and stable ray tracing algorithm for parametric surfaces. J. Inf. Sci. Eng. 18(2001), 541-561.

[27] Point Cloud Library. http://pointclouds.org/

[28] Abert O. P.: Interactive ray tracing of NURBS surfaces by using SIMD instructions and the GPU in parallel. MSc. thesis. Univ. of Koblenz-Landau 2005.

[29] Kay T. L., Kajiya J. T.: Ray tracing complex scenes. Comput. Graphics 20(1986)(SIGGRAPH ’86 Proc.), (D.C. Evans, R.J. Athay, Eds.), 269-278 .

[30] Smits B.: Efficiency issues for ray-tracing. J. Graph. Tools 3(1998), 2, 1-14.

[31] Goldsmith J., Salmon J.: Automatic creation of object hierarchies for ray tracing. IEEE Comput. Graph. 7(1987), 5, 14-20.

[32] Kopytov N.P., Mityushov E.A.: Mathematical model of reinforcement of shells made of composite materials and problem of uniform distribution of points on surfaces. Vestnik PGTU. Mechanika 4(2010), 55-66 (in Rusian).

[33] Kopytov N.P., Mityushov E.A.: The universal algorithm of uniform distribution of points on arbitrary analytic surfaces in three-dimensional space. Fund. Res. 4(2013), 618-622.

[34] Cengel Y.A.: Heat Transfer: A Practical Approach, International Edition, 2nd Edition. McGraw-Hill, 2003.

[35] ANSYS Inc. www.ansys.com.

[36] Seco Warwick Poland: www.secowarwick.com/pl

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 11
PDF Downloads 101 101 26