Steady-state and transient heat transfer through fins of complex geometry

Open access

Abstract

Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

[1] Kraus A.D., Aziz A., Welty J.: Extended Surface Heat Transfer. John Wiley & Sons, Hoboken, New York 2001.

[2] Brandt F.: Warmeubertragung in Dampferzeugern und Warmeaustauschern. FDBR Fachverband Dampfkessel, Behalter- und Rohrleitungsbau E.V., Vulkan Verlag, Essen 1985.

[3] Webb R.L.: Principles of Enhanced Heat Transfer, Wiley & Sons, New York 1994.

[4] McQuiston F.C., Parker J.D., Spitler J.D.: Heating, Ventilating, and Air Conditioning. Analysis and Design, Sixth Edition. J. Wiley & Sons, Hoboken 2005.

[5] Taler D.: Theoretical and Experimental Analysis of Heat Exchangers with Extended Surfaces. Volume 25, Monograph 3, Polish Academy of Sciences, Cracow Branch, Commission of Motorization, Cracow 2002.

[6] Taler D.: Dynamics of Tube Heat Exchangers. Monograph 193, UWND Publishing House, AGH , Cracow2009 (in Polish).

[7] Taler J., Przybyliński P.: Heat transfer by round fins of variable conduction and non-uniform heat transfer coefficient. Chem. Process Eng. 3(1982), 3-4, 659-676.

[8] Rup K., Taler J.: Warmeubergang an Rippenrohren und Membranheizflachen. Brennstoff-Warme-Kraft 41(1989), 3, 90-95.

[9] Taler J., Duda P.: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin 2006.

[10] Acharya S., Baliga B., Karki K., Murthy J. Y., Prakash C., and Vanka S.P.: Pressure-based finite-volume methods in computational fluid dynamics. T. ASME J. Heat Trans. 129(2007),407-424.

[11] Taler D., Korzeń A., Madejski P.: Determining tube temperature in platen superheater tubes in CFB boilers. Rynek Energii 2(93) (2011), 56-60.

[12] Schmidt Th.E.: Heat transfer calculations for extended surfaces. Refig. Eng., 1949, 351-357.

[13] Zabronsky H.: Temperature distribution and efficiency of a heat exchanger using square fins on round tubes. T. ASME J. Appl. Mech, 22(1955), 119.

[14] Carrier W.H., Anderson S.W.: The resistance of heat flow through finned tubing. Heating, Piping, and Air Conditioning, May 1944.

[15] ASHRAE Handbook. Fundamentals Volume, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta 1997.

[16] Schmidt Th.E.: Die Warmeleistung von berippten Oberflachen. Abh. Deutsch. Kaltetechn. Verein No. 4, C.F. Muller, Karlsruhe 1950.

[17] Shah R.K., Bell J.K.: Heat Exchangers. In: The CRC Handbook of Mechanical Engineering (F. Kreith, Ed.) Chap. 4.5, 118-164, CRC Press, Boca Raton 1997.

[18] Shah R.K., Sekulić D.P.: Fundamentals of Heat Exchanger Design. J. Wiley & Sons, Hoboken 2003.

[19] Taler D., Cebula A.: Modeling of flow and thermal processes in compact heat exchangers, Chem. Proces. Eng. 25(2004), 2331-2342 (in Polish).

[20] Taler D., Cebula A.: A new method for determination of thermal contact resistance of a fin-to-tube attachment in plate fin-and-tube heat exchangers. Chem. Proces. Eng. 31(2010), 839-855.

[21] Taler J., Taler D., Sobota T., Cebula A.: Theoretical and Experimental Study of Flow and Heat Transfer in a Tube Bank. In: Advances in Engineering Research. Vol. 1 (V.M. Petrova Ed.), Chap. 1, 1-56, Nova Science Publisher, Inc., New York 2012.

[22] IMSL Math/Library. International Mathematical and Scientific Library. Visual Numerics. Houston 1994.

[23] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipies in Fortran 77, 2nd Edn., Cambridge University Press 1996.

[24] Taler D.: Direct and Inverse Heat Transfer Problems in Dynamics of Plate Fin and Tube Heat Exchangers. In: Heat Transfer, Mathematical Modelling, Numerical Methods and Information Technology (A. Belmiloudi Ed.), Chap. 3, 77-100, InTech, Rijeka 2011, free online edition:www.intechopen.com.

[25] Taler D., Korzeń A.: Modeling of heat transfer in plate fins of complex shape. Rynek Energii 2011, 6(97)(2011), 61-65 (in Polish).

[26] ANSYS Fluent, ver 11.0, User Guide ANSYS, Inc., USA.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 40
PDF Downloads 27 27 16