Recent key technical barriers in solid oxide fuel cell technology

Open access

Abstract

High-temperature solid oxide fuel cells (SOFCs) are considered as suitable components of future large-scale clean and efficient power generation systems. However, at its current stage of development some technical barriers exists which limit SOFC’s potential for rapid large-scale deployment. The present article aims at providing solutions to key technical barriers in SOFC technology. The focus is on the solutions addressing thermal resistance, fuel reforming, energy conversion efficiency, materials, design, and fuel utilisation issues.

[1] Budzianowski W.: Negative net CO2 emissions from oxydecarbonization of biogas to H2. Int. J. Chem. React. Eng. 8(2010), A156.

[2] Muradov N., Veziroglu T.: ‘Green’ path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energ. 33(2008), 6804-6839.

[3] Panayiotou G., Kalogirou S., Tassou S.: Solar hydrogen production and storage techniques. Recent Pat. Mech. Eng. 3(2010), 154-159.

[4] Yilanci A.,Dincer I., Ozturk H.: A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energ. Combust. 35(2009), 231-244.

[5] Kee R., Zhu H., Sukeshini A., Jackson G.: Solid oxide fuel cells: operating principles, current challanges, and the role of syngas. Combust. Sci. Technol. 180(2008), 1207-1244.

[6] Milewski J.,Lewandowski J.: Solid oxide fuel cell fuelled by biogases. Arch. Thermodyn. 30(2009), 4, 3-12.

[7] Budzianowski W.: An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane. Int. J. Hydrogen Energ. 35(2010), 7754-7769.

[8] Milewski J., Miller A., Sałacinski J.: Off-design analysis of sofc hybrid system. Int. J. Hydrogen Energ. 32(2007), 6, 687-698.

[9] Zhang H., Lin G., Chen J.: Performance analysis and multiobjective optimization of a new molten carbonate fuel cell system. Int. J. Hydrogen Energ. 36(2011), 6, 4015-4021.

[10] Badyda K.: Characteristics of advanced gas turbine cycles. Rynek Energii 88(2010), 3, 80-86 (in Polish).

[11] Mueller F., Gaynor R., Auld A., Brouwer J., Jabbari F., Samuelsen G.G.S.: Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability. J. Power Sources 176(2008), 1, 229-239.

[12] Tarroja B., Mueller F., Maclay J., Brouwer J.: Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space. In: Proc. ASME Turbo Expo 2(2008), 829-841.

[13] Tarroja B., Mueller F., Maclay J., Brouwer J.: Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space. J. Eng. Gas Turb. Power 132(2010), 7, 072301.

[14] Wu W., Luo J.-J.: Nonlinear feedback control of a preheaterintegrated molten carbonate fuel cell system. J. Process Contr. 20(2010), 7, 860-868.

[15] Al-Sulaiman F., Dincer I., Hamdullahpur F.: Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. Int. J. Hydrogen Energ. 35(2010), 10, 5104-5113.

[16] Budzianowski W.: Thermal and bifurcation characteristics of heat recirculating conversion of gaseous fuels. Arch. Thermodyn. 31(2010), 2, 63-75.

[17] Lanzini A., Santarelli M., Orsello G.: Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment. Fuel Cells 10(2010), 4, 654-675.

[18] Sciacovelli A., Verda V.: Entropy generation minimization in a tubular solid oxide fuel cell. J. Energ. Resour. 132(2010), 012601.

[19] Kjelstrup S., Coppens M., Pharoah J., Pfeifer P.: Nature-inspired energyand material-efficient design of a polymer electrolyte membrane fuel cell. Energy Fuel 24(2010), 5097-5108.

[20] Sciacovelli A., Verda V.: Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC). Energ. 34(2009), 850-865.

[21] Milewski J., Badyda K., Misztal Z., Wołowicz M.: Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application. Rynek Energii 90(2010), 118-123.

[22] Colombo K., Kharton V., Bolland O.: Simulation of an oxygen membranebased gas turbine power plant: Dynamic regimes with operational and material constraints. Energ. Fuel. 24(2010), 1, 590-608.

[23] Christman K., Jensen M.: Solid oxide fuel cell performance with cross-flow roughness. J. Fuel Cell Sci. Techn. 8(2011), 2, 024501.

[24] Cao H., Deng Z., Li X., Yang J., Qin Y.: Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives. Int. J. Hydrogen Energy 35(2010), 4, 1749-1758.

[25] Cao H., Li X., Deng Z., Jiang J., Yang J., Li J., Qin Y.: Dynamic modeling and experimental validation for the electrical coupling in a 5- cell solid oxide fuel cell stack in the perspective of thermal coupling. Int. J. Hydrogen Energg. 36(2011), 7, 4409-4418.

[26] Hajimolana S., Hussain M., Daud W., Soroush M., Shamiri A.: Mathematical modeling of solid oxide fuel cells: A review. Renew. Sust. Energ. Rev. 15(2011), 4, 1893-1917.

[27] Kishor N., Mohanty S.: Fuzzy modeling of fuel cell based on mutual information between variables. Int. J. Hydrogen Energ. 35(2010), 8, 3620-3631.

[28] Sisworahardjo N., Yalcinoz T., El-Sharkh M., Alam M.: Neural network model of 100 W portable pem fuel cell and experimental verification. Int. J Hydrogen Energ. 35(2010), 17, 9104-9109.

[29] Budzianowski W.: Thermal integration of combustion-based energy generators by heat recirculation. Rynek Energii 91(2010), 6, 108-115.

[30] Jiang Y., Pollard S., Julien D., Tanner C.: WO Patent 2 007 126 588A2 2007.

[31] Budzianowski W.: Non-stationary catalytic combustion over a catalyst with internal temperature gradients. Arch. Combust. 25(2005), 7-15.

[32] Budzianowski W., Koziol A.: Determination of parameters of a catalyst particle in non-stationary conditions. Chem. Process Eng. 25(2004),751-756.

[33] Chou Y.-S., Stevenson J.: WO Patent 2 009 155 184A1, 2009.

[34] Ogiwara T., Matsuzaki Y., Yasuda I., Ito K.: EP Patent 2 244 327A1, 2010.

[35] Jacobson C., Dejonghe L., Lu C.: US Patent 7 816 055B2, 2010

[36] Yano M., Tomita A., Sano M., Hibino T.: Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics 177(2007), 3351-3359.

[37] Kuhn M., Napporn T.: Single-chamber solid-oxide fuel cell technology - from its origin to todayñs state of the art (review). Energies 3(2010), 57-134.

[38] Savoie S., Napporn T., Morel B., Meunier M., Roberge R.: Catalytic activity of ni-ysz anodes in a single chamber solid oxide fuel cell reactor. J. Power Sources 196(2011), 3713-3721.

[39] Shao Z., Haile S., Ahn J., Ronney P., Zhan Z., Barnett S.: A thermally selfsustained micro solid-oxide fuel-cell stack with high power density. Nature 435(2005), 795-798.

[40] Akhtar N., Decent S., Loghin D., Kendall K.: Mixed-reactant, micro-tubular solid oxide fuel cells: An experimental study. J. Power Sources 193(2009), 39-48.

[41] Hao Y., Goodwin D.: Efficiency and fuel utilization of methanepowered singlechamber solid oxide fuel cell. J. Power Sources 183(2008), 157-163.

[42] Haile S., Ronney P., Shao Z.: US Patent 20 077 247 402B2, 2007.

[43] Du Y., Finnerty C.: WO Patent 2 009 061 294A1, 2009.

[44] Lange F., Virkar A.: WO Patent 2 007 005 767A1, 2007.

[45] McElroy J.: US Patent 20 090 208 785A1, 2009.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 28
PDF Downloads 42 42 14