Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2

Open access


In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

[1] Anderson R., MacAdam S., Viteri F., Davies D., Downs J., Paliszewski A.: Adapting gas turbines to zero emission oxy-fuel power plants. ASME Paper GT2008-51377 (2008) 1-11.

[2] Badur J.: Development of Energy Concept. Wyd. IMP PAN, Gdańsk 2009 (in Polish).

[3] Badur J.: Five lecture of contemporary fluid termomechanics. Gdańsk 2005 (in Polish).

[4] Badur J.: Numerical modeling of sustanable combustion at gas turbine. Wyd. IMP PAN Gdańsk 2003 (in Polish).

[5] Badur J., Lemański M.: Inverse Brayton cycle - high performance maner heatrecovery from gas turbine. Energetyka Cieplna i Zawodowa 221(2003), 46-48 (in Polish).

[6] Bolland O, Kvamsdal H.M., Boden J.C.: A thermodynamic comparison ofoxy-fuel power cycles water-cycle, Graz-cycle, and Matiant-cycle. Proc. of the Int. Conf. on Power Generation and Sustainable Development. Liege, Belgium, 2001.

[7] Carapellucci R., Milazzo A.: Repowering combined cycle power plants by amodified STIG configuration. Energ Convers. Manage. 48(2007), 1590-1600.

[8] Chodkiewicz R., Porochnicki J., Kaczan B.: Steam - gas condensing turbinesystem for power and heat generation. ASME Paper 2001-GT-0097 (2001) 1-8.

[9] Chorowski M.: Cryogenics. Basics and applications. IPPU, Masta 2007.

[10] Directive 2010/75/Eu of the European Parliament and of the Council of 24 November2010 on industrial emissions (integrated pollution prevention and control).

[11] Gou1 C., Cai R., Hong H.: An advanced oxy-fuel power cycle with high efficiency. Proc. IMechE Part A: J. Power Energ. 220(2006) 315-324.

[12] Hollis R., Skutley P., Ortiz C., Varkey V., LePage D., Brown B., Davies D., Harris M.: Oxy-fuel turbomachinery development for energy intensive industrialapplications. Proc. of ASME Turbo Expo 2012, GT2012-69988 (2012), 1-9.

[13] Hong J., Chaudhry G., Brisson J.G., Field R., Gazzino M., Ghoniem A.: Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor.

[14] Jericha H., Sanz W., Woisetschläger J, Fesharaki M.: CO2 - RetentionCapability of CH4/O2 - Fired Graz Cycle. CIMAC Conf. Paper, Interlaken, Switzerland 1995.

[15] Jesionek K., Chrzczonowski A., Ziółkowski P., Badur J.: Power enhancementof the Brayton cycle by steam utilization. Arch. Thermodyn. 33(2012), 3, 39-50.

[16] Kaproń H., Wasilewski A.: Natural gas fuel XXI century. Wyd. KAPRINT, Lublin 2012 (in Polish).

[17] Kolev N., Schaber K., Kolev D.: A new type of a gas - steam turbine cyclewith increased efficiency. Appl. Therm. Eng. 21(2001), 391-405.

[18] Kvamsdal H.M., Jordal K, Bolland O.: A quantitative comparison of gasturbine cycles with CO2 capture. Energy 32(2007), 10-24.

[19] Lemański M.: Analyses of thermodynamic cycles with fuel cells and gas-steamturbine. PhD thesis, IF-FM PAS, Gdańsk 2007 (in Polish).

[20] Liu C.Y., Chen G., Sipocz N., Assadi M., Bai X.S.: Characteristic of oxy-fuelcombustion in gas turbine. Apl. Energ. 89(2012), 387-394.

[21] Mathieu Ph., Nihart R.: Sensitivity analysis of the MATIANT cycle. Energ. Convers. Manage. 40(1999), 15, 1687-1700.

[22] Sanz W., Hustad Carl-W., Jericha H.: First generation Graz cycle power plantfor near-term deployment. Proc. of ASME Turbo Expo 2011, GT2011-45135 (2011) 1-11.

[23] Staicovici M.: Further research zero CO2 emission power production: the‘COOLENERG’ process. Energy 27(2002), 831-844.

[24] Topolski J.: Combustion diagnosis in combined gas-steam cycle. PhD thesis, IFFM PAS, Gdańsk, 2002 (in Polish).

[25] Yang H.J., Kang D.W., Ahn J.H., Kim T.S.: Evaluation of design performanceof the semi-closed oxy-fuel combustion combined cycle. Proc. of ASME Turbo Expo 2012, GT2012-69141 (2012) 1-12.

[26] Yantovsky E., Górski J., Shokotov M.: Zero Emissions Power Cycles. Taylor & Francis Group, 2009.

[27] Yantovsky E., Górski J., Smyth B, Elshof J.: Zero-emission fuel-fired powerplants with ion transport membrane. Energy 29(2004), 2077-2088.

[28] Yantovski E., Zvagolsky K., Gavrilenko V.: The COOPERATE- demo powercycle. Energy Convers. Manage 36(1995), 861-864.

[29] Zaporowski B.: Perspectives of development of gas power sources in Polish electroenergetic. Polityka Energetyczna, 12(2009), Z. 2/2, (in Polish).

[30] Zhang N., Lior N.: Two novel oxy-fuel power cycles integrated with natural gasreforming and CO2 capture. Energy 33(2008), 340-351.

[31] Ziółkowski P., Lemański M., Badur J., Nastałek L.: Power augmentation ofPGE Gorzow’s gas turbine by steam injection - thermodynamic overview. Rynek Energii 98(2012), 161-167.

[32] Ziółkowski P., Lemański M., Badur J., Zakrzewski W.: Increase efficiencygas turbine by use the Szewalski idea. Rynek Energii, 100(2012), 63-70 (in Polish).

[33] Ziółkowski P., Zakrzewski W., Sławiński D., Badur J.: Clean gas technology- opportunity for Pomerania. Rynek Energii 104(2013), 79-85 (in Polish).

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 12
PDF Downloads 60 60 4