Antibacterial activity of lime (Citrus aurantifolia) essential oil and limonene against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus)

Open access

Abstract

The antibacterial activity of lime (Citrus aurantifolia) essential oil (LEO) and limonene was tested against seven Gram-negative and nine Gram-positive fish pathogenic bacteria isolated from cultured olive flounder, Paralichthys olivaceus (Temminck & Schlegel) in Korea. Limonene was >99% concentrated and LEO consisted of eleven chemical compounds including 56.22% of limonene. Disk diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) tests were done. LEO and limonene inhibited the growth of both Gram-negative and Gram-positive bacteria. LEO and limonene (MBC/MIC= 2-8) were both bactericidal and bacteriostatic for the strains tested. In every fish pathogenic bacteria, the inhibition zone diameter (IZD) increased in proportion to the oil concentration and the maximum effect was found at 100% (V/V) concentrations of LEO and limonene. The antibiogram pattern indicated that all the bacterial strains, excluding three strains of S. iniae (S186, S530, and S131), showed resistance to one or more antibiotics. The percentage of the relative inhibition zone diameter (RIZD %) exhibited high values at higher concentrations of all the agents. Since antibacterial activities of LEO and limonene were considerably effective against fish pathogenic bacteria, they could be used as alternatives to treat bacterial infections in aquaculture.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aibinu I. Adenipekun T. Adelowotan T. Ogunsanya T. Odugbemi T. 2007 – Evaluation of the antimicrobial properties of different parts of Citrus aurantifolia (lime fruit) as used locally – Afr. J. Trad. Complement Altern Med. 4(2): 185-190.

  • Apraj V. Thakur N.D. Bhagwat A. Mallya R. Sawant L. Pandita N.P. 2011 – Pharmacognostic and phytochemical evaluation of Citrus aurantifolia (Christm) Swingle PEEL – Phcog. J. 3(26): 70-76.

  • Burt S. 2004 – Essential oils: their antibacterial properties and potential applications in foods - a review – Int. J. Food Microbiol. 94(3): 223-253.

  • Chisholm M.G. Wilson M.A. Gaskey G.M. 2003 – Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle) – Flavor Frag. J. 18(2): 106-115.

  • Chueca B. Pagán R. García-Gonzalo D. 2014 – Differential mechanism of Escherichia coli inactivation by (+)-limonene as a function of cell physiological state and drug’s concentration – PLoS ONE 9(4): e94072. doi: 10.1371/journal.pone.0094072.

  • CLSI 2014 – Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; second informational supplement CLSI document. VET03/VET04-S2. Wayne PA: Clinical and Laboratory Standards Institute.

  • Costa R. Bisignanoa C. Filocamo A. Grasso E. Occhiuto F. Spadaroa F. 2014 – Antimicrobial activity and chemical composition of Citrus aurantifolia (Christm.). Swingle essential oil from Italian organic crops – J. Essent. Oil Res. 26: 400-408.

  • Craske J.D. Suryadi N. Wootton M.A. 2005 – A comparison of the peel oil components of Australian native lime (Microcitrus australe) and Mexican lime (Citrus aurantifolia Swingle) – J. Sci. Food Agric. 85: 522-525.

  • Das M. Rath C.C. Mohapatra U.B. 2012 – Bacteriology of a most popular street food (Panipuri) and inhibitory effect of essential oils on bacterial growth – J. Food Sci. Tech. 49(5): 564-571.

  • Fisher K. Phillips C. 2008 – Potential application of plant essential oil as natural preservatives against Escherischia coli O157: H7 Pak – J. Biolog Sci. 11: 2054-2061.

  • Galluci M.N. Oliva M. Casero C. Dambolena J. Luna A. Zygadlo J. and Demo M. 2009 – Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli Staphylococcus aureus and Bacillus cereus – Flavor Frag. J. 24: 348-354.

  • Gharagozloo M. Doroudchi M. Ghaderi A. 2002 – Effects of Citrus aurantifolia concentrated extract on the spontaneous proliferation of MDA-MB-453 andRPMI-8866 tumor cell lines – Phytomedicine 9: 475-477.

  • Hammer K.A. Carson C.F. Riley T.V. 1999 – Antimicrobial activity of essential oils and other plant extracts – J. Appl. Microbiol. 86(6): 985-990.

  • Imlay J.A. Chin S.M. Linn S. 1988 – Toxic DNA damage by hydrogen-peroxide through the Fenton reaction in-vivo and in-vitro – Science 240: 640-642.

  • Jafari S. Esfahani S. Fazeli M.R. Jamalifar H. Samadi M. Samadi N. Najarian-Toosi A. Shams A. Khanavi M. – 2011. Antimicrobial activity of lime essential oil against food-borne pathogens isolated from cream-filled cakes and pastries – J. Biol. Chem. 5: 258-265.

  • Jee B.Y. Shin K.W. Lee D.W. Kim Y.J. Lee M.K. 2014 – Monitoring of the mortalities and medications in the inland farms of olive flounder in. Paralichthys olivaceus in South Korea – J. Fish Pathol. 27: 77-83.

  • Kim S.M. Jun L.J. Park M.A. Jung S.H. Jeong J.B. 2015 – Monitoring of emaciation disease in cultured olive flounder in Jeju (2010-2013) Korea – Korean J. Fish Aquat. Sci. 48: 719-724.

  • Liu Y. Imlay J.A. 2013 – Cell death from antibiotics without the involvement of reactive oxygen species – Science 339: 1210-1213.

  • Mahato N. Sharma K. Koteswararao R. Sinha M. Baral E. Cho M.H. 2017 – Citrus essential oils: Extraction authentication and application in food preservation – Crit. Rev. Food Sci. doi.org/10.1080/10408398.2017.1384716

  • Morton J. 1987 – Mexican lime in fruits of warm climates – In: Fruits of warm climates (Ed.) C. Morton University of Miami Coral Gables Florida USA: 168-172.

  • Nazzaro F. Fratianni F. Martino L.D. Coppola R. de Feo V. 2013 – Effect of essential oils on pathogenic bacteria – Pharmaceuticals 6: 1451-1474.

  • Nho S.W. Shin G.W. Park S.B. Jang H.B. Cha I.S. Ha M.A. Kim Y.R Park Y.K. Dalvi R.S. Kang B.J. Joh S.J. Jung T.S. 2009 – Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus) – FEMS Microbiol. Lett. 293: 20-27.

  • Nicolosi E. Deng Z.N. Gentile A. La Malfa S. Continella G. Tribulato E. 2000 – Citrus phylogeny and genetic origin of important species as investigated by molecular markers – Theor. Appl. Genet. 100: 1155-1166.

  • Njau E.A. Alcorn J. Ndakidemi P. Chirino-Trejo N. Buza J. 2014 – Antimicrobial and antioxidant activity of crude extracts of Rauvolfia caffra var. caffra (Apocynaceae) from Tanzania – Int. J. Biol. 6: 156-167.

  • Pongsak R. Parichat P. 2009 – Protective effect of clove oil-supplemented fish diets on experimental Lactococcus garvieae infection in tilapia – Biosci. Biotech. Bioch. 73: 2085-2089.

  • Repine J.E. Fox R.B. Berger E.M. 1981 – Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical – J. Biol. Chem. 256: 7094-7096.

  • Taur D.J. Kulkarni V.B. Patil R.Y. Patil R.N. 2009 – Anthelmintic activity of Ocimum sanctum and Citrus aurantifolia oils – Pharmacologyonline 3: 495-499.

  • Tundis R. Loizzo M.R. Bonesi M. Menichini F. Mastellone V. Colicaa C. Menichini F. 2012 – Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle C. aurantium L. and C. bergamia Risso and Poit. peel essential oils – J. Food. Sci. 77: H40–H46.

  • Turker H. Yildirim A.B. 2015 – Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections – Biotechnol. Biotechnol. Equip. 29: 281-288.

  • Valladao G.M.R. Gallani S.U. Pilarski F. 2015 – Phytotherapy as an alternative for treating fish disease – J. Vet. Pharmacol. Therap. 38: 417-428.

  • Vimal M. Vijaya P.P. Mumtaj P. Seema M.S.F. 2013 – Antibacterial activity of selected compounds of essential oils from indigenous plants – J. Chem. Pharmaceutic. Res. 5: 248-253.

  • We L.S. Wee W. 2013 – Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals – Iran. J. Microbiol. 5: 147-152.

Search
Journal information
Impact Factor


CiteScore 2018: 0.72

SCImago Journal Rank (SJR) 2018: 0.286
Source Normalized Impact per Paper (SNIP) 2018: 1.053

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1008 232 24
PDF Downloads 815 435 62