Replacement of fish meal by solid state fermented lupin (Lupinus albus) meal with Latobacillus plantarum 299v: Effect on growth and immune status of juvenile Atlantic salmon (Salmo salar)

Uriel Rodríguez-Estrada 1 , 2 , Katerina González-Alfaro 3  and Carolina Shene 4
  • 1 Cátedras CONACYT (National Council of Science and Technology of México Federal Government), , 03940, México city
  • 2 Laboratory of Tropical Aquaculture, DACBiol (Academic Division of Biological Sciences), UJAT (Juarez Autonomous University of Tabasco), 86039, Villahermosa
  • 3 Department of Chemistry and Biology Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
  • 4 Department of Chemical Engineering, Faculty of Engineering and Science, Scientific and Technological Bioresource Nucleus, BIOREN, de la Frontera University, Temuco, Chile

Abstract

The aim of this study was to assess quality of SSF (Solid State Fermented) lupin with Lactobacillus plantarum 299v, and its effects (on growth, feed utilization, digestibility and immunity) of juvenile Atlantic salmon (S. salar), when used as fish meal replacer. Five experimental diets were formulated to provide 40% crude protein and 21% dietary lipid (dry matter basis) with the raw or fermented lupin meal-based protein source replacing fish meal at 15% and 30%. Triplicate groups of fish (averaging 3.53 ± 0.05 g) were fed with experimental diets for 8 weeks. Fermentation process modified nutrient profile of lupin meal and enriched it with lactic, citric and acetic acids. Fish in the FL15% group showed a higher (P < 0.05) final body weight, weight gain, FCR, SGR, and PER compared to those of C group. Apparent digestibility coefficient (ADC) of protein and Nitrogen-free extract showed a significantly higher values in FL15% experimental group, compared to those shown in C group. Fish in the FL15% group showed a higher (P<0.05) lysozyme activity and leucocyte respiratory burst compared to that shown by fish samples in the C experimental group; phagocytic activity did not record differences among experimental groups. In conclusion, replacement of fish meal by raw or fermented lupin meal did not compromise growth, apparent digestibility coefficients and immune status of juvenile Atlantic salmon and even improve fish performance when supplemented at 15%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abu-Elala N.M., & Ragaa N.M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) in the health status of cultured Oreochromis niloticus. J. Adv. Res, 6: 621–629.

  • Acar U., Kesbic O.S., Yilmaz S., & Karabayir A. (2018). Growth performance, hematological and serum biochemical profiles in rainbow trout (Oncorhynchus mykiss) fed varying levels of lupin (Lupinus albus) meal. Aquac. Res, 49: 2579–2586.

  • Al-Thobaiti A., Al-Ghanim K., Suliman E.M., &Mahboob S. (2017). Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance of Nile tilapia (Oreochromis niloticus L.) diets. Braz. J. Biol., 78(3): online. http://dx.doi.org/10.1590/1519-6984.172230

  • AOAC (1995). Official Methods of Analysis of the Association of Analytical Chemist. 16th Edition. AOAC: Washington, DC. 1018 pp.

  • Baruah K., Sahu N.P., Pal A.K., Jain K.K., Debnath D., Mukherjee S.C. (2007). Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juveniles at sub-optimal protein level. Aquac. Res., 38(2): 109 – 120.

  • Bonaldo A., Parma L., Mandrioli L., Sirri R., Fontanillas R., Badiani A., Gatta P.P. (2011). Increasing dietary plant proteins affect growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture, 318(1-2): 101 – 108.

  • Bransden M.P., Carter C.G., & Nowak B.F. (2001). Effect of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci., 73(1): 105 – 113.

  • Castillo S., Rosales M., Pohlenz C., Gatlin III, D.M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433: 6 – 12.

  • Chi C-H., & Cho S-J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. Tech., 68: 619 – 625.

  • Cizeikiene D., Juodeikiene G., & Damasius J. (2018). Use of wheat straw biomass in production of L-lactic acid applying biocatalysts and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatal. Agri. Biotechnol., 15: 185 – 191.

  • Cunha S.C., Ferreira I.M.P.L.V.O., Fernandes J.O., Faria M.A., Beatriz M., Oliveira P.P., & Ferreira M. A. (2001). Determination of lactic, acetic, succinic, and citric acids in table olives by HPLC/UV. J. Liq. Chromatogr. R. T., 24(7): 1029 – 1038.

  • Dai C., Ma H., He R., Huang L., Zhu S., Ding Q., & Luo L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT, 86: 1 – 7.

  • Fu W., & Mathews A.P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate and oxygen. Biochem. Eng. J., 3(3): 163 – 170.

  • Fuentes-Quesada J., Viana M.T., Rombenso A.N., Guerrero-Rentería Y., Nomura-Solís M., Gómez-Calle V., Lazo J.P., Mata-Sotres J.A. (2018). Enteritis induction by soybean meal in Toaba macdonaldi diets: Effects on growth performance, digestive capacity, immune response and distal intestine integrity. Aquaculture, 495: 78 – 89.

  • Furukawa A. & Tsukahara H. (1996). On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulleting of. Jpn. Soc. Sci. Fish., 32(3): 502–506.

  • Gatlin III D.M., Barrows F.T., Brown P., Dabrowsky K., Gaylord T.G., Hardy R.W., …Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res., 38(6): 551-579.

  • Gao X., Zhang M., Li X., Han Y., Wu F., & Liu Y. (2018). The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immun., 78: 42 – 51.

  • Giri S.S., Sukumaran V., & Oviya M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita). Fish Shellfish Immunol., 34(2): 660 – 666.

  • Gislason G., Olsen R.E., Hinge E. (1996). Comparative effects of dietary Na+ - lactate on Artic char, Salvelinus alpinus L., and Atlantic salmon, Salmo salar L. Aquac. Res., 27(6): 429 – 435.

  • Glencross D.B., Boujard T., & Kaushik S.J. (2003). Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture, 219(1-4):703-713.

  • Hang Y.D., Luh B.S., & Woodams E.E. (1987). Microbial production of Citric Acid by Solid State Fermentation of Kiwifruit Peel. J. Food Sci., 52(1): 226 – 227.

  • Hansen A-C., Roselund G., Karlsen O., Olsvik P.A., & Hemre G-I. (2006). The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquac. Res., 37(8): 773 – 784

  • He W., Rahimnejad S., Wang L., Song K., Lu K., & Zhang C. (2017). Effects of organic acid and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immun., 70: 164 – 173.

  • Ho V.T.T., Fleet G.H., & Zhao J. (2018). Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to coca fermentation using inoculating organisms. Intl. J. Food Microbiol., 279: 43 – 56.

  • Johansen, R., Needham, J.R., Colquhoun, D.J., Poppe, T.T. & Smith, J. (2006) Guidelines for health and welfare monitoring of fish use in research. Laboratory Animals, 40(4), 323-340.

  • Katya K., Park G., Bharadwaj A.S., Browdy C., Vazquez-Anon M., & Bai S.C. (2018). Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquac. Res., 49(8): 2861 – 2868.

  • Khajepour F., & Hosseini S.A. (2012). Citric acid improves growth performance and phosphorous digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Anim. Feed Sci. Tech., 171(1): 68 – 73.

  • Koh C-B., Romano N., Zahrah A.S., & Ng W-K (2016). Effects of dietary organic acid blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquac. Res., 47(2): 357 – 369.

  • Li C., Zhang G.F., Mao X., Wang J.Y., Duan C.Y., Wang Z.J. & Liu L.B. (2016). Growth and acid production of Lactobacillus delbrueckii spp. Bulgaricus ATCC 11842 in the fermentation of algal carcass. J. Dairy Sci., 99(6): 4243 – 4250.

  • Liong M.T., & Shah N.P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J. Applied Microbiol., 99(4): 783 – 793.

  • Liu W., Yang Y., Zhang J., Gatlin D.M., Ringo E., Zhou Z. (2014). Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response, and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidized oil. Brit. J. Nutr., 112: 15 – 29.

  • Luckstadt C. (2008). The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agri. Vet. Sci., Nutr. and Nat. Res., 3(44): 1 – 8.

  • Mladenovic D., Pejin J., Kocic-Tanackov S., Radovanovic Z., Djukic-Vukovic A., Mojovic L. (2018). Lactic acid production on molasses enriched potato stillage by Lactobacillus paracasei immobilized on fish agro-industrial waste supports. Ind. Crop. Prod., 124: 142 – 148.

  • Moniruzzaman M., Bae J.H., Won S.H., Cho S.J., Chang K.H., & Bai S.C. (2017). Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout Oncorhynchus mykiss. Aquac. Nutr., 24(4): 1198 – 1212.

  • Ng W-K., & Koh C.B. (2016). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquacult., 9(4): 342 – 368.

  • Ng W-K., Koh C-B., Teoh C-T., Romano N. (2015). Farm-raised shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to Vibrio harveyi challenge. Aquaculture, 449(1): 69 – 77.

  • Oude-Elferink S.J.W.H., Krooneman J., Gottschal J.C., Spoelstra S.F., Faber F., Driehuis F. (2001). Aerobic conversion of Lactic Acid to Acetic Acid and 1,2-Propaneidol by Lactobacillus buchneri. Appl. Environ. Microb., 67(1): 125 – 132.

  • Panigrahi A., Kiron V., Kobayashi T., Puangkaew J., Satoh S., & Sugita H. (2004). Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet. Immunol. Immunop., 102(4): 379 – 388.

  • Pandey A. (2003). Solid-state fermentation. Biochem. Eng. J., 13(2-3): 81 – 84.

  • Pandey A., & Satoh S. (2008). Effects of organic acids on growth and phosphorous utilization in rainbow trout Oncorhynchus mykiss. Fish. Sci., 74(4): 867 – 874.

  • Parry R.M., Chandan R.C., & Shahani K.M. (1965). A rapid and sensitive assay of muramidase. P. Soc. Exp. Biol., 119(2): 301 – 306.

  • Pranoto Y., Anggrahini S., & Efendi Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci., 2: 46 – 52.

  • Rahimnejad S., Lu K., Wang L., Song K., Mai K., Davis D.A., Zhang C. (2019). Replacement of fish meal with Bacillus pumillus SE5 and Pseudpzyma aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus). Fish & Shellfish Immunol., 84: 987 – 997.

  • Ray M., (2001). Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquac. Nutr., 5(4): 229 – 236.

  • Ringo E. (1991). Effects of dietary lactate and propionate on growth and ingesta in Arctic charr, Salvelinus alpinus (L.). Aquac., 96(3-4): 321 – 333.

  • Ringo E., Olsen R.E., & Castell J.D. (1994). Effect of dietary lactate on growth and chemical composition of Artic Charr Salvelinus alpinus. J. World Aquacult. Soc., 25(3): 483 – 486.

  • Romano N., Koh C-B., & Ng W-K. (2015). Dietary microencapsulated organic acids blend enhances growth, phosphorous utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, 435: 228 - 236.

  • Saez P., Borquez A., Dantagnan P., & Hernández A. (2015) Effects of de-hulling, steam-cooking and microwave-irradiation in digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Arch. Anim. Nutri., 69 (2): 143 – 157.

  • Sakai M., Kobayashi M., & Kawauchi H. (1996). In vitro activation of fish phagocytosis cells by GH, prolactina and somatolactin. J. Endocrinol., 151(1): 113 – 118.

  • Salini M.J., & Adams L.R. (2014). Growth performance, nutrient utilization and digestibility by Atlantic salmon (Salmo salar) fed Tasmanian grown white (Lupinus albus) and narrow-leafed (L. angustifolius) lupins. Aquaculture., 426-427: 296 – 303.

  • Sarker M.S.A., Satoh S., Kamata K., Haga Y., & Yamamoto Y. (2011). Partial replacement of fish meal with plant protein sources using organic acids to practical diets for juvenile yellowtail, Seriola quinqueradiata. Aquacult. Nutr., 18(1): 81 – 89.

  • Shiu Y-L., Hsieh S-L., Guei W-C., Tsai Y-T., Chiu C-H., & Liu C-H. (2013). Using Bacillus substilis E20-fermented soybean meal as replacement for fish meal in the diet of orange-spotted grouper (Epinephelus coioides, Hamilton). Aquacult. Res., 46(6): 1403 – 1416.

  • Smith D.M., Tabrett S.J., Glencross B.D., Irvin S.J., Barclay M.C. (2007). Digestibility of lupin kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture, 264(1-4). 353 – 362.

  • Smit G., Smit B.A., & Engels W.J. (2005). Flavor formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS of Microbiol. Rev., 29(3): 591 – 610.

  • Sharawy Z., Goda A. M. A. S., & Hassaan M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, postlarvae. Anim. Feed Sci. Tech., 212: 90 – 99.

  • Soccol C.R., Scopel-Ferreira da Costa E., Junior-Letti J.A., Karp S.G., Woiciechowski A.L., Porto de Souza-Vandenberghe L. (2017). Recent developments and innovations in solid state fermentation. Biotech. Res. Innov., 1(1): 52 – 71.

  • Srisukchayakul P., Charalampopoulos D., Karatzas K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Res. Intl., 111: 198 – 204.

  • Su, X., Li X., Leng X., Tan C., Liu B., Chai X., Guo T. (2014). The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult. Intl., 22(6): 1823 – 1835.

  • Sugiura S.H., Roy P.K., Ferraris R.P. (2006). Dietary acidification enhances phosphorous digestibility but decreases H+ / K+ - ATPase expression in rainbow trout. J. Exp. Biol., 209: 3719 – 3728.

  • Sun H., Tang J-W., Yao X-H., Wu Y-F., Wang X., Liu Y., & Lou B. (2015). Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquacult., 446: 30 – 36.

  • Tabrett S., Blyth D., Bourne N., & Glencross B. (2012). Digestibility of Lupinus albus lupin meals in barramundi (Lates calcarifer). Aquacult., 364-365: 1 – 5.

  • Tacon A.G.J., & Metian M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fish. Sci. Aquacult., 23: 1 – 10.

  • Vandenberghe L.P.S., Karp S.G., de Oliveira P.Z., de Carvalho J.C., Rodrigues C., & Soccol C.R. (2018). Chapter 18-Solid-State fermentation for the production of organic acids. In: Current Developments in Biotechnology and Bioengineering. Current advances in Solid-State Fermentation (Pandey, A., Larroche, C., & Soccol C.R. eds), pp 415 – 434. Elsevier. Langford Lane, Kidlington, UK.

  • Van-Doan H., Doolgindachbaporn S., & Suksri A. (2014). Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880). Fish & Shellfish Immun., 41(2): 340 – 345.

  • Vielma J., & Lall S.P. (2006). Dietary formic acid enhanced apparent digestibility of minerals in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Nutr., 3(4): 265 – 268.

  • Vo B.V., Bui D.P., Nguyen H.Q., & Fotedar R. (2015). Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture, 444: 62 – 69.

  • Wang J.-h., Guo H., Zhang T-r., Wang H., Liu B-n., & Xiao S. (2016a). Growth performance and digestion improvement of juvenile sea cucumber Apostichopus japonicus fed by solid-state fermentation diet. Aquacult. Nutr., 23(6): 1312 – 1318.

  • Wang L., Zhou H., He R., Xu W., Mai K., & He G. (2016b). Effect of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture, 464: 87 – 94.

  • Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Yi M. (2018). Effects of dietary Lactobacillus rhamnosus JMC1136 and Lactococcus lactis subs. Lactis JCM5805 on the growth, intestinal microbioita, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immun., 76: 368 – 379.

  • Yin G., Jeney G., Racz T., Pao X., & Jeney Z. (2006). Effect of two Chinese herbs (Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, Oreochromis niloticus. Aquaculture, 253(1-4): 39 – 47.

  • Yu L., Zhai Q., Zhu J., Zhang C., Li, T. ... Chen W. (2017). Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotox. Environ. Safe., 143: 307 – 314.

  • Zhang C., Rahimnejad S., Wang Y., Lu K., Song K., Wang L., & Mai K. (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483: 173 – 182.

  • Zhang T.S., Shi Y., Zhang S.L., Shang W., Gao X.Q., & Wang H.K. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41. 1 – 6.

OPEN ACCESS

Journal + Issues

Search