Effects of Partial Replacement of Soybean Meal With Rapeseed Meal, Narrow-Leaved Lupin, DDGS, and Probiotic Supplementation, on Performance and Gut Microbiota Activity and Diversity in Broilers

Open access

Abstract

This study examines the impact of soybean meal (SBM) substitutes, including solvent-extracted 00 rapeseed meal (RSM), narrow-leaved lupin (LUPIN), and distillers dried grains with solubles (DDGS) (each used at a ratio of 250 g/kg−1 in the diet), as well as administered probiotic (L. casei, L. plantarum, Rhodopseudomonas palustris, S. cerevisiae), on gut microbiota activity, diversity and performance. The experimental treatments were arranged in a 4 × 2 factorial design, with the factors being protein source in the diets (SBM only, RSM, LUPIN or DDGS) given from 8 to 35 days of age, and with or without a probiotic preparation administered in drinking water during the entire rearing period. The performance declined in birds fed with SBM substitutes (P≤0.01). The RSM diet decreased concentration of short chain fatty acids (SCFAs) (P<0.01) in ileal and caecal digesta as well as decreased bacterial enzymes activity in the caeca. The LUPIN diet increased viscosity and decreased SCFAs concentration in ileum, while the DDGS diet increased butyrate concentration in caeca. SBM substitutes and probiotic were involved in changing the Clostridiales and Lactobacillales diversity in the ileal and caecal digesta. Probiotic administration did not affect performance, but it did alleviate some negative effects of SBM substitutes on microbiota activity and diversity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AOAC (2005). Official Methods of Analysis (18th ed.). Association of Official Analytical Chemists Arlington VA

  • Aviagen (2014). Ross 308 broiler: performance objectives. Accessed August 2017. http://en.aviagen.com/assets/Tech.Center/Ross.Broiler/Ross-308-Broiler-PO-214-EN.pdf.

  • Barszcz M. Taciak M. Skomiał J. (2011). A dose-response effects of tannic acid and protein on growth performance caecal fermentation colon morphology and β-glucuronidase activity of rats. J. Anim. Feed Sci. 20: 613–625.

  • Beaud D. Tailliez P. Anba-Mondoloni J. (2005). Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium Ruminococcus gnavus. Microbiology 151: 2323–2330.

  • Bjerrum L. Engberg R.M. Leser T.D. Jensen B.B. Finster K. Pedersen K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Sci. 85: 1151–1164.

  • Czerwiński J. Højberg O. Smulikowska S. Engberg R.M. Mieczkowska A. (2010). Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens. Brit. Poult. Sci. 51: 258–269.

  • Czerwiński J. Højberg O. Smulikowska S. Engberg R.M. Mieczkowska A. (2012). Effects of sodium butyrate and salinomycin upon intestinal microbiota mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr. 66: 102–116.

  • De Cesare A. Sirri F. Manfreda G. Moniaci P. Giardini A. Zampiga M. Meluzzi A. (2017). Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PloS One 12: e0176309.

  • Gao P. Ma C.H. Sun Z. Wang L. Huang S. Su X. Xu J. Zhang H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome 5: 91.

  • ISO 9167-1 (1992). Rapeseeds – Determination of glucosinolates content. Part 1. Method using gradient elution high performance liquid chromatography. Geneva: ISO.

  • Jin L.Z. Ho Y.W. Abdullah N. Jalaludin S. (2000). Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poultry Sci. 79: 886–891.

  • Jørgensen H. Zhao X-Q. Bach Knudsen K.E. Eggum B. (1996). The influence of dietary fibre source and level on the development of the gastrointestinal tract digestibility and energy metabolism in broiler chickens. Brit. J. Nutr. 75: 379–395.

  • Józefiak D. Rutkowski A. Martin S.A. (2004). Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Tech. 113: 1–15.

  • Konieczka P. Smulikowska S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal 12: 1144–1153.

  • Konieczka P. Nowicka K. Madar M. Taciak M. Smulikowska S. (2018). Effects of pea extrusion and enzyme and probiotic supplementation on performance microbiota activity and biofilm formation in the broiler gastrointestinal tract. Br. Poult. Sci. 59: 654–662.

  • Loar II R.E. Donaldson J.R. Corzo A. (2012). Effects of feeding distillers dried grains with solubles to broilers from 0 to 42 days posthatch on broiler performance carcass characteristics and selected intestinal characteristics. J. Appl. Poult. Res. 21: 48–62.

  • MacFarlane S. MacFarlane G.T. (2003). Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62: 67–72.

  • Olnood Ch.G. Beski S.S.M. Iji P.A. Choct M. (2015). Delivery routes for probiotics: effects on broiler performance intestinal morphology and gut microflora. Anim. Nutr. 1: 192–202.

  • Pan D. Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5: 108–119.

  • Pedersen M.B. Dalsgaard S. Knudsen K.E.B. Yu S. Lærke H.N. (2014). Compositional profile and variation of distillers dried grains with solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci. Tech. 197: 130–141.

  • Pool-Zobel B. Van Loo J. Rowland I. Roberfroid M.B. (2002). Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Brit. J. Nutr. 87: S273–SS281.

  • Pustjens A.M. Schols H.A. Kabel M.A. Gruppen H. (2013). Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal. Carbohydr Polym. 98: 1650–1656.

  • Rehman H.U. Vahjen W. Awad W.A. Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr. 61: 319–335.

  • Rinttilä T. Apajalahti J. (2013). Intestinal microbiota and metabolites – Implications for broiler chicken health and performance. J. Appl. Poult. Res. 22: 647–658.

  • Rubio L.A. Brenes A. Setién I. de la Asunción G. Durán N. Cutuli M.T. (1998). Lactobacilli counts in crop ileum and caecum of growing broiler chickens fed on practical diets containing whole or dehulled sweet lupin (Lupinus angustifolius) seed meal. Brit. Poult. Sci. 39: 354–359.

  • Sergeant M.J. Constantinidou C. Cogan T.A. Bedford M.R. Penn C.W. Pallen M.J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9: e91941; doi:10.1371/journal.pone.0091941.

  • Sharifi S.D. Dibamehr A. Lotfollahian H. Baurhoo B. (2012). Effects of flavomycin and probiotic supplementation to diets containing different sources of fat on growth performance intestinal morphology apparent metabolizable energy and fat digestibility in broiler chickens. Poultry Sci. 91: 918–927.

  • Smulikowska S. Rutkowski A. (Eds) (2005). Recommended Allowances and Nutritive Value of Feedstuffs – Poultry Feeding Standards (in Polish). 4th Edition. The Kielanowski Institute of Animal Physiology and Nutrition PAS Jabłonna (Poland).

  • Statistical Graphic Corporation 1982–2010. STATGRAPHICS® Centurion XVI version 16.1.03. Statistical Graphic System Statistical Graphic Corporation.

  • Timmerman H.M. Veldman A. van den Elsen E. Rombouts F.M. Beynen A.C. (2006). Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poultry Sci. 85: 1383–1388.

  • Van der Wielen P.W. Biesterveld S. Notermans S. Hofstra H. Urlings B.A. van Knapen F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66: 2536–2540.

  • Yadav S. Jha R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization performance and health of poultry. J. Anim. Sci. Biotech. 10: 2; https://doi.org/10.1186/s40104-018-0310-9.

  • Zduńczyk Z. Jankowski J. Juśkiewicz J. Mikulski D. Słominski B.A. (2013). Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci. 93: 353–362.

  • Zduńczyk Z. Jankowski J. Rutkowski A. Sosnowska E. Drażbo A. Zduńczyk P. Juśkiewicz J. (2014). The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Tech. 191: 57–66.

  • Zduńczyk Z. Jankowski J. Kaczmarek S. Juśkiewicz J. (2015). Determinants and effects of postileal fermentation in broilers and turkeys. Part 2: cereal fibre and SBM substitutes. World Poultry Sci. J. 71: 49–57.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 19
PDF Downloads 147 147 23