The Effect of Combined Feed Additives on Growing Pigs’ Performance and Digestive Tract Parameters

Open access

Abstract

The aim of the research was to determine the affectivity of 4 different eubiotic preparations on the growth performance of pigs, microbial status, the integrity of intestinal mucosa, and some blood parameters. The experiment was conducted for 28 days on 48 male piglets allocated to six dietary treatments. Group 1 was offered a diet without eubiotic; 2 – a diet with acids mixture; 3 – phytobiotic, medium-chain fatty acids (MCFA) and yeast; 4 – probiotic, MCFA, and yeast; 5 – phytobiotic, probiotic, acids mixture, and sodium butyrate; 6 – phytobiotic, probiotic, MCFA, and sodium butyrate. The average daily weight gains and feed intake were recorded. Blood samples, digesta samples, and ileal tissue samples were collected for studies. There was no significant difference in gain, feed intake, or FCR among the treatments as well as in the ileal and caecal pH value, microbial content, and total SCFA content in caecal digesta. Ammonia content in ileal digesta was significantly higher in comparison with other groups and in caecal digesta was significantly higher in group 6 in comparison with groups 1 and 2. Villi height was significantly higher (P<0.05) in groups 2, 3 and 6 compared to the control. Villi height to crypt depth ratio was significantly higher (P<0.05) in groups 5 and 2, but the most promising effects seem to be from combinations 3 and 4. In comparison with control: in groups 2, 3 and 5 higher ALT, glucose and triglyceride; in groups 3, 4 and 5 higher total protein and cholesterol; in group 4 higher albumin and in group 6 higher BUN, were found. Generally, used eubiotic preparations affected gut morphology and some blood parameters but did not affect microbiota, pig growth or feed utilization.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bael B.A. Roxas D.B. (2013). Effects of yeast-based non-nutritional enhancers on the performance of weanling pigs. Philippines J. Vet. Anim. Sci. 39: 71–80.

  • Barszcz M. Taciak M. Skomiał J. (2011). A dose-response effects of tannic acid and protein on growth performance caecal fermentation colon morphology and β-glucuronidase activity of rats. J. Anim. Feed Sci. 20: 613–625.

  • Barszcz M. Taciak M. Skomiał J. (2016). The effects of inulin dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr. 70: 278–292.

  • Bartoš P. Dolan A Smutný L. Šístková M. Celjak I. Šoch M. Havelka Z. (2016). Effects of phytogenic feed additives on growth performance and on ammonia and greenhouse gases emissions in growing-finishing pigs. Anim. Feed Sci. Technol. 212: 143–148.

  • Botsoglou N.A Florou-Paneri P. Christaki E. Fletouris D.J. Spais A.B. (2002). Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast thigh and abdominal fat tissues. Brit. Poultry Sci. 43: 223–230.

  • Brestoff J.R. Artis D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14: 676–684.

  • Chwen L.T. Foo H.L. Thanh N.T. Choe D.W. (2013). Growth performance plasma fatty acids villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas. J. Anim. Sci. 26: 700–704.

  • Costa L.B. Berenchtein B. Almeida V.V. Tse M.L.P. Braz D.B. Andrade C. Mourão G.B. Miyada V.S. (2011). Phytobiotic additives and sodium butyrate as growth promoters of weanling pigs. Arch. Zootec. 60: 687–698.

  • Fang C.L. Sun H. Wu J. Niu H. Feng J. (2014). Effects of sodium butyrate on growth performance haematological and immunological characteristics of weanling piglets. J. Anim. Physiol. Anim. Nutr. 98: 680–685.

  • Fouhse J.M. Zijlstra R.T. Willing B.P. (2016) The role of gut microbiota in the health and disease of pigs. Anim. Front. 6: 30–36.

  • GfE (2006). Empfehlungen zur Energie- und Nahrstoffversorgung von Schweinen. vol. 10. DLG-Verlag. Frankfurt am Main. Germany.

  • Gheisar M.M. Kim I.H. (2018). Phytobiotics in poultry and swine nutrition – a review. It. J. Anim. Sci. 17: 92–99.

  • Grajek K. Sip A. Foksowicz-Flaczyk J. Dobrowolska A. Wita A. (2016). Adhesive and hydrophobic properties of the selected LAB isolated from gastrointestinal tract of farming animals. Acta Bioch. Pol. 63: 311–314.

  • Grashorn M.A. (2010). Use of phytobiotics in broiler nutrition – an alternative to infeed antibiotics? J. Anim. Feed Sci. 19: 338–347.

  • Han G.G. Lee J.Y. Jin G.D. Park J. Choi Y.H. Chae B.J. et al. (2016) Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl. Microbiol. Biotechnol. 101: 5903–5911.

  • Hanczakowska E. Szewczyk A. Swiatkiewicz M. Okon K. (2013). Short- and medium-chain fatty acids as a feed supplement for weaning and nursery pigs. Pol. J. Vet. Sci. 16: 647–654.

  • Hill C. Guarner F. Reid G. Gibson G.R. Merenstein D.J. Pot B. Morelli L. Canani R.B. Flint H.J. Salminen S. Calder P.C. Sanders M.E.. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506–514.

  • Hong S.M. Hwang J.H. Kim I.H. (2012). Effect of medium-chain triglyceride (MCT) on growth performance nutrient digestibility blood characteristics in weanling pigs. Asian-Australas. J. Anim. Sci. 25: 1003–1008.

  • Houshmand M. Azhar K. Zulkifli I. Bejo M. H. Kamyab A. (2011). Effects of non antibiotic feed additives on performance nutrient retention gut pH and intestinal morphology of broilers fed different levels of energy. J. Appl. Poult. Res. 20: 121–128.

  • Huang C. Song P. Fan P. Hou C. Thacker P. Ma X. (2015). Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J. Nutr. 145: 2774–2780.

  • Li Y. Zhang H. Yang L. Zhang L. Wang T. (2015). Effect of medium-chain triglycerides on growth performance nutrient digestibility plasma metabolites and antioxidant capacity in weanling pigs. Anim. Nutr. 1: 12–18.

  • Liao S.F. Nyachoti M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 3: 331–343.

  • Liu Y. Espinosa C.D. Abelilla J.J. Casas G.A. L. Lagos V. Lee S.A. Kwon W.B. Mathai J.K. Navarro D.M.D.L. Jaworski N.W. Stein H.H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Anim. Nutr. https://doi.org/10.1016/j.aninu.2018.01.007

  • Long S.F. Xu Y.T. Pan L. Wang Q.Q. Wang C.L. Wu J.Y. Wu Y.Y. Han Y.M. Yun C.H. Xiangshu P. (2018). Mixed organic acids as antibiotic substitutes improve performance serum immunity intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol. 235: 23–22.

  • Metges C. (2010). Classical and post-genomic methods to study GIT function with emphasison the pig. Livest. Sci. 133: 10–19.

  • Metzler B. Bauer E. Mosenthin R.. (2005). Microflora management in the gastrointestinal tract of piglets. Asian-Australas. J. Anim. 18: 1353–1362.

  • Meulen Van Der J. Jansman A. (1997). Nitrogen metabolism in gastrointestinal tissue of the pig. Proc. Nutr. Soc. 56: 535–545.

  • Muñoz R. Tor M. Estany J. (2012). Relationship between blood lipid indicators and fat content and composition in Duroc pigs. Livest. Sci. 148: 95–102.

  • Namkung H. Li M. Gong J. Yu H. Cottrill M. De Lange C.F.M. (2004). Impact of feeding blends of organic acids and herbal extracts on growth performance gut microbiota and digestive function in newly weaned pigs. Can. J. Sci. 84: 697–704.

  • Nowak P. Kasprowicz-Potocka M. Zaworska A. Nowak W. Stefańska B. Sip A. Grajek W. Juzwa W. Taciak M. Barszcz M. Tuśnio A. Grajek K. Foksowicz-Flaczyk J. Frankiewicz A. (2017). The effect of eubiotic feed additives on the performance of growing pigs and the activity of intestinal microflora. Arch. Anim. Nutr. 71: 455–469.

  • Pereira C.M.C. Donzele J.L. de Oliveira Silva F.C. de Oliveira R.F.M. Kiefer C. Ferreira A.S. Hannas M.I. Brustolini P.C. (2012). Yeast extract with blood plasma in diets for piglets from 21 to 35 days of age. Rev. Brasil. Zoot. 41:1676–1682.

  • Piyadeatsoontorn S. Taharnklaew R. Upathanpreecha T. Sornplang P. (2018). Encapsulating viability of multi-strain Lactobacilli as potential probiotic in pigs. Probiotics and Antimicrobial Proteins; doi: 10.1007/s12602-018-9418-7.

  • Rauw M. Portolés O. Corella D. Soler J. Reixach J. Tibau J. Prat J.M. Diaz I. Gómez-Raya L. (2007). Behaviour influences cholesterol plasma levels in a pig model. Animal 1: 865–871.

  • Rosell V.L. Zimmerman D.R. (1985). Threonine requirement of pigs weighing 5 to 15 kg and the effect of excess methionine in diets marginal in threonine. J. Anim. Sci. 60: 480–486.

  • Santini C. Baffoni L. Gaggia F. Granata M. Gasbarri R. Di Gioia D. Biavati B. (2010). Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int. J. Food Microbiol. 141(Suppl 1): 98–108.

  • Suiryanrayna M.V.A.N. Ramana J.V. (2015). A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 6: 45.

  • Uni Z. Platin R. Sklan D. (1998). Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus. J. Comp. Physiol. B. 168: 241–247.

  • Vidanarachchi J.K. Mikkelsen L.L. Sims I. Iji P.A. Choct M. (2005). Recent phytobiotics: alternatives to antibiotic growth promoters in monogastric animal feeds. Adv. Anim. Nutr. Austral. 15: 131–144.

  • Windisch W. Schedle K. Plitzner C. Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86: 140–148.

  • Winnicka A. (2011). The reference values of basic laboratory tests in veterinary medicine (in Polish). Wartości referencyjne podstawowych badań laboratoryjnych w weterynarii. Wydawnictwo SGGW.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 267 26
PDF Downloads 237 237 28