The Effects of Dietary Whey Lactose and Lactobacillus Agilis Bacteria on the Growth Performance, Physicochemical Conditions of the Digestive Tract and the Caecal Microbial Ecology of Broiler Chickens

Open access

Abstract

The principal goal of this study was to assess the responses of broiler chickens raised on floor litter to the 2% dietary level of lactose (LAC) originating from dried whey fed in combination with live culture of Lactobacillus agilis bacteria (90 million cells/kg diet) in terms of the performance and basic postslaughter parameters, the lumen pH in some alimentary tract segments, concentration of volatile fatty acids (VFA ) in the total (T) and undissociated (UD) forms and count of selected microbial populations in the caeca determined by fluorescent in-situ hybridisation (FISH). A parallel aim was to evaluate the outcomes from the combined supplementation in comparison with feeding of LAC and the L. agilis bacteria as separate dietary supplements. Six hundred and forty Ross 308 chickens were placed in 16 floor pens (40 birds per pen having equal sex ratio) and were provided with free access to the feed (a mash maize-wheat-soybean meal-based diet) and water. Dietary treatments provided from day 8 to 42 of age were: LAC-free basal diet (CON), LAC-containing diet (CON + LAC), LAC-free diet with the addition of L. agilis (CON + BAC) and LAC-containing diet with addition of L. agilis (CON + LAC + BAC). The LAC supplementation caused significant decreases in the luminal pH of the crop, ileum and caeca, and the addition of the L. agilis bacteria reduced the pH in the crop and caeca. The overall concentration of total (T) volatile fatty acids was higher in the caeca of broilers receiving the LAC-containing diets. Both the LAC and the BAC supplements, independently from one another, resulted in significantly greater caecal levels of UD acetate, propionate and butyrate. The FISH analysis revealed that counts of Bacteroides sp./Prevotella sp. group were higher after the inclusion of LAC in the feed. All three dietary supplementations significantly reduced the total counts of the family Enterobacteriaceae and decreased the number of naturally occurring C. perfringens bacteria compared with the basal control diet (CON). Neither LAC inclusion nor BAC addition to the diet affected the counts of the Clostridium coccoides/Eubacterium rectale group. The synergistic effects of the simultaneous supplementation of LAC and L. agilis were found on the T butyrate concentration and on C. perfringens and the Enterobacteriaceae counts. No improvements in the body weight gains and post-slaughter traits were observed due to uncombined and combined supplementation with 2% LAC and L. agilis, indicating that the shifts in composition of the caecal microbiota toward a healthier composition by using these additives were not large enough to create the positive growth rate and processing yields responses in broilers maintained in a litter-floor environment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adhikari P.A. Kim W.K. (2017). Overview of prebiotics and probiotics: focus on performance gut health and immunity -areview. Ann. Anim. Sci. 17: 949-966.

  • Alloui M.N. Szczurek W. (2017). Effects of different dietary levels of whey lactose asaprebiotic disaccharide on the productive performances and selected indices of the caecal micro-environment in broiler chickens. Ann. Anim. Sci. 17: 1107-1122.

  • Alloui M.N. Szczurek W. Świątkiewicz S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition:areview. Ann. Anim. Sci. 13: 17-32.

  • AOAC International (2000). Official methods of analysis of AOAC International. Gaithersburg USA 17th ed. Association of Analytical Communities.

  • Aviagen(2014). Ross Broiler Management Handbook. 0814-AVNR-032. Aviagen Inc. Huntsville USA pp. 131.

  • Baele M. Devriese L.A. Haesebrouck F. (2001). Lactobacillus agilis is an important component of the pigeon crop flora. J. Appl. Microbiol. 91: 488-491.

  • Bozkurt M. Kucukyilmaz K. Catli A.U. Cinar M. (2009). The effect of single or combined dietary supplementation of prebiotics organic acid and probiotics on performance and slaughter characteristics of broilers. S. Afr. J. Anim. Sci. 39: 197-205.

  • Cavaglieri C.R. Nishiyama A. Fernandes L.C. Curi R. Miles E.A. Calder P.C. (2003). Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 73: 1683-1690.

  • Chen C.Y. Tsen H.Y. Lin C.L. Yu B. Chen C.S. (2012). Oral administration ofacombination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poultry Sci. 91: 2139-2147.

  • Decroos K. Vercauteren T. Werquin G. Verstraete W. (2004). Repression of Clostridium population in young broiler chickens after administration ofaprobiotic mixture. Commun. Agric. Appl. Biol. Sci. 69: 5-13.

  • Deng Y. Misselwitz B. Dai N. Fox M. (2015). Lactose intolerance in adults: biological mechanism and dietary management. Nutrients 7: 8020-8035.

  • Duncan S.H. Louis P. Flint H.J. (2004). Lactate-utilizing bacteria isolated from human feces that produce butyrate asamajor fermentation product. Appl. Environ. Microbiol. 70: 5810-5817.

  • Ehrmann M.A. Kurzak P. Bauer J. Vogel R.F. (2002). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 92: 966-975.

  • El-Banna H.A. El-Zorba H.Y. Attia T.A. Elatif A.A. (2010). Effect of probiotic prebiotic and synbiotic on broiler performance. World Appl. Sci. J. 11: 388-393.

  • Fallani M. Rigottier- Gois L. Guilera M. Bridonneau C. Collignon A. Ed - wards C.A. Corthier G. Doré J. (2006). Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16Sr RNAtargeted probes. J. Microbiol. Methods 67: 150-161.

  • Foley S.L. Lynne A.M. Nayak R. (2008). Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci. 86 (14 Suppl.): E149-E162.

  • Franks A.H. Harmsen H.J. Raangs G.C. Jansen G.J. Schut F. Welling G.W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16Sr RNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64: 3336-3345.

  • Fuller R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378.

  • Guentzel M.N. (1996). Escherichia Klebsiella Enterobacter Serratia Citrobacter and Proteus. In: Medical microbiology Baron S. (ed.). University of Texas Medical Branch at Galveston USA 4th ed. available from: http://www.ncbi.nlm.nih.gov/books/NBK8035/

  • Hinton Jr. A. Corrier D.E. Spates G.E. Norman J.O. Ziprin R.L. Beier R.C. De -Loach J.R. (1990). Biological control of Salmonella typhimurium in young chickens. Avian Dis. 34: 626-633.

  • Hinton Jr. A. Corrier D.E. Ziprin R.L. Spates G.E. De Loach J.R. (1991). Comparison of the efficacy of cultures of cecal anaerobes as inocula to reduce Salmonella typhimurium colonization in chicks with or without dietary lactose. Poultry Sci. 70: 67-73.

  • Jung S.J. Houde R. Baurhoo B. Zhao X. Lee B.H. (2008). Effects of galactooligosaccharides anda Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poultry Sci. 87: 1694-1699.

  • Kalavathy R. Abdullah N. Jalaludin S. Ho Y.W. (2003). Effects of Lactobacillus cultures on growth performance abdominal fat deposition serum lipids and weight of organs of broiler chickens. Br. Poultry Sci. 44: 139-144.

  • Kermanshahi H. Rostami H. (2006). Influence of supplemental dried whey on broiler performance and cecal flora. Int. J. Poultry Sci. 5: 538-543.

  • Lan P.T. Binh L.T. Benno Y. (2003). Impact of two probiotic Lactobacillus strains feeding on fecal Lactobacilli and weight gains in chicken. J. Gen. Appl. Microbiol. 49: 29-36.

  • Layton S. Hernandez- Velasco X. Chaitanya S. Xavier J. Menconi A. Lator- re J. Kallapura G. Kuttappan V. Wolfenden R. Filho R. Hargis B. Tel- lez G. (2013). The effect ofa Lactobacillus-based probiotic for the control of necrotic enteritis in broilers. Food Nutr. Sci. 4 (11A): 1-7.

  • Manz W. Szewczyk U. Ericsson P. Amann R. Schleifer K.H. Stenström T.A. (1993). In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16Sand 23Sr RNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59: 2293-2298.

  • Mc Reynolds J.L. Byrd J.A. Genovese K.J. Poole T.L. Duke S.E. Farnell M.B. Nisbet D.J. (2007). Dietary lactose and its effect on the disease condition of necrotic enteritis. Poultry Sci. 86: 1656-1661.

  • Meimandipour A. Shuhaimi M. Hair-Bejo M. Azhar K. Kabeir B.M. Rasti B. Yazid A.M. (2009). In vitro fermentation of broiler cecal content: the role of lactobacilli and p H value on the composition of microbiota and end products fermentation. Lett. Appl. Microbiol. 49: 415-420.

  • Mookiah S. Sieo C.C. Ramasamy K. Abdullah N. Ho Y.W. (2014). Effects of dietary prebiotics probiotic and synbiotics on performance caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric. 94: 341-348.

  • Ocejo M. Oporto B. Juste R.A. Hurtado A. (2017). Effects of dry whey powder and calcium butyrate supplementation of corn/soybean-based diets on productive performance duodenal histological integrity and Campylobacter colonization in broilers. BMC Vet. Res. 13:199. DOI: 10.1186/s12917-017-1121-5.

  • Patel G.B. (1983). Fermentation of lactose by Bacteroides polypragmatus. Can. J. Microbiol. 29: 120-128.

  • Radfar M. Farhoomand P. (2008). The role of probiotic and source of lactose as feed additives on performance and gut improvement in broilers. Asian J. Anim. Vet. Adv. 3: 179-182.

  • Reece F.N. Deaton J.W. May J.D. May K.N. (1971). Cage versus floor rearing of broiler chickens. Poultry Sci. 50: 1768-1790.

  • Rehman H. Vahjen W. Kohl-Parisini A. Ijaz A. Zentek J. (2009). Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World’s Poultry Sci. J. 65: 75-90.

  • Ricke S.C. (2015). Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poultry Sci. 94: 1411-1418.

  • Rutkowski A. Kaczmarek S. Józefiak D. (2005). Alternatives for flavomycin in broiler chicken nutrition. Proc. 15th European Symposium on Poultry Nutrition Balatonfured Hungary 25-29.09.2005 pp. 253-255.

  • Samli H.E. Senkoylu N. Koc F. Kanter M. Agma A. (2007). Effects of Enterococcus faecium and dried whey on broiler performance gut histomorphology and intestinal microbiota. Arch. Anim. Nutr. 61: 42-49.

  • Sghir A. Gramet G. Suau A. Rochet V. Pochart P. Doré J. (2000). Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263-2266.

  • Takeda T. Fukata T. Miyamoto T. Sasai K. Baba E. Arakawa A. (1995). The effects of dietary lactose and rye on caecal colonisation of Clostridium perfringens in chicks. Avian Dis. 39: 375-381.

  • Totton S.C. Farrar A.M. Wilkins W. Bucher O. Waddell L.A. Wilhelm B.J. Rajić A. (2012). The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens:asystematic review meta-analysis and metaregression approach. Prev. Vet. Med. 106: 197-213.

  • vander Wielen P.W.J.J. Biesterveld S. Notermans S. Hofstra H. Urlings B.A.P. Van Knapen F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66: 2536-2540.

  • Van Immerseel F. De Buck J. De Smet I. Pasmans F. Haesebrouck F. Ducatelle R.. (2004). Interactions of butyric acid and acetic acid-treated Salmonella with chicken primary cecal epithelial cells in vitro. Avian Dis. 48: 384-391.

  • Vicente J. Wolfenden A. Torres-Rodriguez A. Higgins S. Tellez G. Har- gis B. (2007). Effect ofa Lactobacillus species-based probiotic and dietary lactose prebiotic on turkey poult performance with or without Salmonella enteritidis challenge. J. Appl. Poultry Res. 16: 361-364.

  • Willis W.L. Murray C. Talbott C (2002). Campylobacter isolation trends of cage versus floor broiler chickens:aone-year study. Poultry Sci. 81: 629-631.

  • Wyszyńska A. Kobierecka P. Bardowski J. Jagusztyn- Krynicka E.K. (2015). Lactic acid bacteria - 20 years exploring their potential as live vectors for mucosal vaccination.Appl. Microbiol. Biotechnol. 99: 2967-2977.

  • Zhu X.Y. Joerger R.D. (2003). Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific 16Sr RNAtargeted oligonucleotide probes. Poultry Sci. 82: 1242-1249.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 533 333 18
PDF Downloads 318 219 14