Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats

Open access

Abstract

Copper (Cu) is required for all basic biochemical and physiological processes. The aim of this study was to evaluate the effects of different sources of dietary Cu on the histomorphometry of liver and jejunal epithelium in adult rats. Male 12-week-old rats were used in a 12-week experiment. The control diet provided the required Cu level from sulfate, and other two diets were supplemented with Cu as a glycine complex at 75% and 100% of daily requirement. Basal hematological and plasma biochemical analyses were also performed. There was no effect of Cu supplementation on the liver weight and the plasma and liver Cu concentration. Histomorphometric analysis of liver tissue showed an increase in the collagen amount and intracellular space in the group supplemented with Cu amino acid. Cu given in the organic form at 100% of daily requirement decreased the muscular and submucosa layer and the crypt depth. In turn, organic copper given at 75% of daily requirement did not influence the intestinal morphology. Dietary Cu given to adult rats as copper sulfate or a glycine complex meeting 100% of the daily requirement appears to be less harmful with regard to intestinal epithelium than when given as a glycine complex at 100% of daily requirement.

Aigner E., Strasser M., Haufe H., Sonnweber T., Hohla F., Stadlmayr A., Solioz M., Tilg H., Patsch W., Weiss G., Stickel F., Datz C., (2010). Arole for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am. J. Gastroenterol., 105: 1978-1985.

Allen K.G.D., Klevay L.M. (1978). Copper deficiency and cholesterol metabolism in the rat. Atherosclerosis, 31: 259-271.

Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini. Rev. Med. Chem., 4: 1-21.

Apgar G.A., Kornegay E.T. (1996). Mineral balance of finishing pigs fed copper sulfate oracopper-lysine complex at growth-stimulating levels. J. Anim. Sci. 74:1594-1600.

Arakeri G., Brennan P.A. (2013). Dietary copper: Anovel predisposing factor for oral submucous fibrosis? Med. Hypotheses, 80: 241-243.

Ashmead H.D., Graff D.J., Ashmead H.H. (1985). Intestinal absorption of metal ions and chelates. Charles C. Thomas, Springfield, IL., pp. 118-125.

Bao Y.M., Choct M., Iji P.A., Bruerton K. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poultry Res. 16: 448-455.

Brewer G.J. (2010). Copper toxicity in the general population. Clin. Neurophysiol., 121: 459-460. DOI: 10.1016/j.clinph.2009.12.015.

Chiou P.W.S., Chen C.L., Chen K.L., Wu C.P. (1999). Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian Austral. J. Anim. Sci., 12: 548-553. DOI: http://dx.doi.org/10.5713/ajas.1999.548.

Cohen J.A., Kaplan M.M. (1975). Abstract of SGOT/SGPTratio in liver disease. Gastroenterol., 43, A-13/813.

Ding X., Xie H., Kang Y.J. (2011). The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem., 22: 301-310.

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14-24.

Dobryszczycka W., Owczarek H. (1981). Effects of lead, copper, and zinc on the rat’s lactate dehydrogenase in vivo and in vitro. Arch. Toxicol., 48: 21-27.

Eckert G.E., Greene L.W., Carstens G.E., Ramsey W.S. (1999). Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. J Anim Sci. 77: 244-249.

Fields M., Ferretti R.J., Reiser S., Smith Jr. J.C. (1984). The severity of copper deficiency in rats is determined by the type of dietary carbohydrate. Exp. Biol. Med., 175: 530-537.

Fry R.S., Ashwell M.S., Lloyd K.E., O'Nan A.T., Flowers W.L., Stewart K.R., Spears J.W. (2012). Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and m RNAexpression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci., 90: 3112-3119. DOI:10.2527/jas.2011-4403.

Fuentealba I.C., Mullins J.E., Aburto E.M., Lau J.C., Cherian G.M. (2000). Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. J. Toxicol. Clin. Toxicol. 7: 709-717.

Han X.Y., Du W.L., Huang Q.Ch., Xu Z.R., Wang Y.Z. (2012). Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res., 145: 355-360.

Hebert C. (1993). NTPtechnical report on the toxicity studies of cupric sulfate (CAS No. 7758-99-8) administered in drinking water and feed to F344/Nrats and B6C3F1 mice. Toxic Rep Ser.29: 1-D3.

Kisielinski K., Willis S., Prescher A., Klosterhalfen B., Schumpelick V. (2002). Asimple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med., 2: 131-135.

Klevay L.M., Inman L., Johnson L.K., Lawler M., Mahalko J.R., Milne D.B., Lukaski H.C., Bolonchuk W., Sandsteadet H.H. (1984). Increased cholesterol in plasma inayoung man during experimental copper depletion. Metabolism, 33: 1112-1118.

Kwiecień M., Winiarska- Mieczan A., Valverde Piedra J.L., Bujanowicz - Haraś B., Chałabis - Mazurek A. (2015 a). Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers. Agr. Food Sci. Finland, 24: 92-103.

Kwiecień M., Samolińska W., Bujanowicz - Haraś B. (2015 b). Effects of iron glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J. Anim. Physiol. An. N., 99, 6: 1184-1196. DOI: 10.1111/ jpn.12322.

Kwiecień M., Winiarska - Mieczan A., Milczarek A., Klebaniuk R. (2016 a). Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., DOI: 10.1007/s12011-016-0743-y.

Kwiecień M., Winiarska - Mieczan A., Milczarek A., Tomaszewska E., Matras J. (2016 b). Effects of zinc glycine chelate on growth performance, carcass traits and bone quality of broiler chicken. Livest. Sci., DOI; 10.1016/j.livsci.2016.07.005.

Linder M.C., Hazegh - Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797-811.

Makarski B. (2002). The influence of Cu-lysine chelat andaphytase on biological reaction of turkeys (in Polish). Rozprawy Naukowe AR Lublin. 256 pp.

Makarski B., Kwiecień M., Zadura A. (2009 a). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. I. Hematological and biochemical indices of blood and production effects of turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 184-192.

Makarski B., Kwiecień M., Zadura A. (2009 b). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. II: The shares of mineral elements in the tissue and the contents of the large intestine in turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 193-198.

Männer K., Simon O., Schlegel P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: Tagung Schweine - und Geflügelernährung, M. Rodehutscord. 9th ed. Universität Halle-Wittenberg, Germany, 2006.

Megahed M.A., Hassanin K.M.A., Youssef I.M.I., Elfghi A.B.A, Amin K.A. (2014). Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J. Invest. Biochem., 3: 21-25. DOI: 10.5455/jib.20130716075753.

Millsa C.F., Dalgarnoa A.C., Wenhama G. (1976). Biochemical and pathological changes in tissues of Friesian cattle during the experimental induction of copper deficiency. Br. J. Nutr., 35: 309-331.

National Research Council (NRC) (2005). Mineral Tolerance of Animals. Committee on Minerals and Toxic Substances in Diets and Water for Animals. Natl. Acad. Press, Council http://www.nap.edu/catalog/11309.html, 147 pp.

Peňa M.M.O., Lee J., Thiele D.J. (1999). Adelicate balance: homeostatic control of copper uptake and distribution. J. Nutr., 1129: 1251-1260.

Reyes J.G. (1996). Zinc transport in mammalian cells. Am. J. Physiol., 270: C401-C410.

Rinaldi A.C. (2000). Meeting report - copper research at the top. Biometals, 13: 9-13.

Roberts E.A., Michael L. (2008). Schilsky diagnosis and treatment of Wilson disease: An update. Hepatology, 47: 2089-2111.

Salama R., Nassar A., Nafady A., Mohamed H. (2007). Anovel therapeutic drug (copper nicotinic acid complex) for non-alcoholic fatty liver. Liver Int., 27: 454-64.

Świątkiewicz S., Koreleski J., Hong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317-328.

Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479-486.

Tomaszewska E., Dobrowolski P., Kwiecień M. (2015). Intestinal alterations, basal hematology and biochemical parameters in adolescent rats fed different sources of dietary copper. Biol. Trace Elem. Res., DOI: 10.1007/s12011-015-0522-1.

Wang Z., Cerrate S., Coto C., Yan F., Waldroup P.W. (2007). Evaluation of MINTREXcopper asasource of copper in broiler diet. Inter. J. Poultry Sci., 6: 308-313.

Xia M.S., Hu C.H., Xu Z. R. (2004). Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poultry Sci., 83: 1868-1875.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 18
PDF Downloads 47 47 13