Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens

Open access


This study was conducted to evaluate the efficiency of dietary zinc forms and dosages on egg production performance, egg quality, and bone characteristics in laying hens. Forty-two-week-old, 144 Lohmann LSL-Lite laying hens were allocated to 12 experimental groups in a 4 (forms) × 3 (dosages) factorial arrangement. Four zinc forms including zinc-sulphate and zinc-oxide as inorganic forms, zinc-glycine as organic form and nano zinc-oxide powder as nano form at different dosages (50, 75 and 100 mg per kg diet) were tested. Compared to the inorganic (zinc-sulphate) form, the zinc-glycine supplementation significantly depressed the egg weight, egg mass and feed conversion ratio. The eggshell thickness was significantly decreased by supplementation with nano zinc-oxide. The shear force of tibia was significantly decreased by zinc-glycine or nano zinc-oxide supplemented in the diet when compared to inorganic forms of zinc. On the other hand, the dietary 50 mg/kg dosage of zinc was sufficient for optimum performance and the dietary 75 mg/kg dosage of zinc significantly improved shear force of tibia in laying hens. Tibia zinc content increased with the dietary 100 mg/kg dosage of zinc. The interactions between zinc forms and dosages had a significant effect on egg weight, feed intake, feed conversion ratio, eggshell thickness, shear force and shear stress of bone, and tibia calcium concentration. The highest egg weight and the lowest eggshell thickness were observed for the group fed with nano Zn-oxide at 100 mg/kg in the diet. These results showed that nano zinc form supplementation negatively affects the eggshell thickness and bone mechanical properties. The zinc in nano form may not be suggested for feeding laying hens, but other forms of zinc could be used safely in layer diets.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Amem M.H.M. Al - Daraji H.J. (2011). Zinc improves egg quality in Cobb 500 broiler breeder females. Int. J. Poultry Sci. 10: 471-476.

  • Ao T. Pierce J. (2013). The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poultry Sci. J. 9: 5-16.

  • Ao T. Pierce J.L. Power R. Dawson K.A. Pescatore A.J. Cantor A.H. Ford M.J. (2006). Evaluation of bioplex Zn as an organic zinc source for chicks. Int. J. Poultry Sci. 5: 808-811.

  • Armstrong T.A. Flowers W.L. Spears J.W. Nielsen F.H. (2002). Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts. J. Anim. Sci. 80: 154-161.

  • ASAE (2001). ASAE Standards S459: Shear and Three Point Bending Test of Animal Bone. American Society of Agricultural Engineers St. Joseph USA.

  • Bahakaim A.S.A. Magied H.A.A. Osman S.M.H. Omar A.S. Abdel Malak N.Y. Ramadan N.A. (2014). Effect of using different levels and sources of zinc in layer’s diets on egg zinc enrichment. Egypt Poultry Sci. 34: 39-56.

  • Bain M.M. (1997). Areinterpretation of eggshell strength. In: Egg and eggshell quality Solomon S.E. (ed.). London Manson Publishing pp. 131-142.

  • Beattie J.H. Avenell A. (1992). Trace element nutrition and bone metabolism. Royaume-Uni: Cambridge University Press Cambridge.

  • Brody T. (1997). Nutritional biochemistry. Academic Press New York USA pp. 581-591.

  • Etches R.J. (1987). Calcium logistics in the laying hens. J. Nutr. 117: 619-628.

  • Hadley K.B. Newman S.M. Hunt J.R. (2010). Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation matrix maturation and mineralization in the long bones of growing rats. J. Nutr. Biochem. 21: 297-303.

  • Hett A. (2004). Nanotechnology: Small matter. Many unknowns. Swiss Reinsurance Company Zurich.

  • Huang S. Wang L. Liu L. Hou Y. Li L. (2015). Nanotechnology in agriculture livestock and aquaculture in China: Areview. Agron. Sustain. Dev. 35: 369-400.

  • Hudson B.P. Dozier W.A. Wilson J.L. Sander J.E. Ward T.L. (2004). Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age. J. Appl. Poultry Res. 13: 349-359.

  • Idowu O.M.O. Ajuwon R.O. Oso A.O. Akinloye O.A. (2011). Effect of zinc supplementation on laying performance serum chemistry and Zn residue in tibia bone liver excreta and egg shell of laying hens. Int. J. Poultry Sci. 10: 225-230.

  • Innocenti A. Zimmerman S. Ferry J.G. Scozzafava A. Supuan C.T. (2004). Carbonic anhydrase inhibitors. Inhibition of the zinc and cobalt gamma-class enzyme from the archaeon Methanosarcina thermophila with anions. Bioorg. Med. Chem. Lett. 14: 3327-3331.

  • Jonchere V.V. Brionne A.B. Gautron J.J. Nys Y.Y. (2012). Identification of uterine ion transporters for mineralisation precursors of the avian eggshell. BMC Physiol. 12: 10.

  • Kidd M.T. Ferket P.R. Qureshi M.A. (1996). Zinc metabolism with special reference to its role in immunity. World’s Poultry Sci. J. 52: 309-323.

  • Kita K. Hohmura I. Okumura J. (1997). Influence of dietary zinc methionine supplementation on eggshell quality in laying hens under hot climate environment. Japan Poultry Sci. 34: 21-26.

  • Kucuk O. Sahin N. Sahin K. (2003). Supplemental zinc and vitamin Acan alleviate negative effects of heat stress in broiler chickens. Biol. Trace Elem. Res. 93: 225-235.

  • Leeson S. (2005). Trace mineral requirements of poultry validity of the NRCrecommendations. In: Re-defining Mineral Nutrition Taylorpickard J.A. Tucker L.A. (eds). Nottingham UK pp. 107-117.

  • Leeson S. Summers J.D. (2005). Commercial poultry production. 3rd ed. University Books Guelph Ontario Canada pp. 165.

  • Mezes M. Erdelyi M. Balogh K. (2012). Deposition of organic trace metal complexes as feed additives in farm animals. Eur. Chem. Bull. Sec. C 1: 410-413.

  • Midilli M. Salman M. Muğlalı Ö.H. Çenesiz S. Ormancı N. Pakdil M. Gürcanİ.S. (2015). The effects of different zinc sources and microbial phytase supplementation on the tibial bone properties strength and Zn mineralization broilers fed with diet low phosphorus. J. Facul. Vet. Med. Kafkas Univ. 21: 607-614.

  • Mohammadi V. Ghazanfari S. Mohammadi-Sangcheshmeh S. Nazaran M.H. (2015). Comparative effects of zinc-nano complexes zinc-sulphate and zinc methionine on performance in broiler chickens. Brit. Poultry Sci. 56: 486-493.

  • Mohanna C. Nys Y. (1999). Effect of dietary zinc content and sources on the growth body zinc deposition and retention zinc excretion and immune response in chickens. Brit. Poultry Sci. 40: 108-114.

  • Nagata M. Lönnerdal B. (2011). Role of zinc in cellular zinc trafficking and mineralization inamurine osteoblast-like cell line. J. Nutr. Biochem. 22: 172-178.

  • NRC (1994). National Research Council Nutrient requirements of poultry. 9th ed. National Academy Press Washington DC.

  • Nys Y. Hincke M.T. Arias J.L. Garcia - Ruiz J.M. Solomon S.E. (1999). Avian eggshell mineralization. Avian Poultry Biol. Rev. 10: 143-166.

  • Ovesen J. Moller - Madsen B. Thomsen J.S. Danscher G. Mosekilde L. (2001). The positive effects of zinc on skeletal strength in growing rats. Bone 29: 565-570.

  • Peretz A. Papadopoulos T. Willems D. Hotimsky A. Michiels N. Siderova V. Bergmann P. Neve J. (2001). Zinc supplementation increases bone alkaline phosphatase in healthy men. J. Trace Elem. Med. Biol. 15: 175-178.

  • Rossi P. Rutz F. Anciuti M.A. Rech J.L. Zauk N.H.F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. J. Appl. Poultry Res. 16: 219-225.

  • Sahoo A. Swain R.K. Mishra S.K. (2014). Effect of inorganic organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. Inter. J. Adv. Res. 2: 828-837.

  • Sahraei M. Janmmohamdi H. Taghizadeh A. Cheraghi S. (2012). Effect of different zinc sources on tibia bone morphology and ash content of broiler chickens. Adv. Biol. Res. 6: 128-132.

  • Scrimgeour A.G. Stahl C.H.H. Mc Clung J.P. Marchitelli L.J. Young A.J. (2007). Moderate zinc deficiency negatively affects biomechanical properties of tibiae independently of body composition. J. Nutr. Biochem. 18: 813-819.

  • Shelton J.L. Southern L.L. (2007). Interactive effect of zinc copper and manganese in diets for broilers. Int. J. Poultry Sci. 6: 466-469.

  • Spears J.W. (1989). Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects on growth and performance of growing heifers. J. Anim. Sci. 67: 835-843.

  • Stofanikova J. Saly J. Molnar L. Sesztakova E. Bilek J. (2011). The influence of dietary zinc content on mechanical properties of chicken tibiotarsal bone. Acta Vet. 61: 531-541.

  • Sunder G.S. Panda A.K. Gopinath N.C.S. Rao S.R. Raju M.V.L.N. Reddy M.R. Kumar C.V. (2008). Effects of higher levels of zinc supplementation on performance mineral availability and immune competence in broiler chickens. J. Appl. Poultry Res. 17: 79-86.

  • Swiatkiewicz S. Koreleski J. (2008). The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. Vet. Med. 53: 555-563.

  • Tabatabaie M.M. Aliarabi H. Saki A.A. Ahmadi A. Siyar S.A. (2007) Effect of different sources and levels of zinc on egg quality and laying hen performance. Pak. J. Biol. Sci. 10: 3476-3478.

  • Wang X. Fosmire G.J. Gay C.V. Leach R.M. (2002). Short-term zinc deficiency inhibits chondrocyte proliferation and induces cell apoptosis in the epiphyseal growth plate of young chickens. J. Nutr. 132: 665-673.

  • Webster A. (2004). Welfare implications of avian osteoporosis. Poultry Sci. 83: 184-192.

  • Wedekind K.J. Hortin A.E. Baker D.H. (1992). Methodology for assessing zinc bioavailability: efficacy estimated for zinc-methionine zinc sulphate and zinc oxide. J. Anim. Sci. 70: 178-187.

  • Wilson J.H. Ruszler P.L. (1996). Effects of dietary boron supplementation on laying hens. Brit. Poultry Sci. 37: 723-729.

  • Yamaguchi M. (2010). Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 338: 241-254.

  • Yamaguchi M. Kishi S. (1996). Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol. Cell. Biochem. 158: 171-177.

  • Zamani A. Rahmani H.R. Pourreza J. (2005). Effect of different levels of manganese and zinc on performance traits and breaking eggs in laying hens. Pak. J. Biol. Sci. 8: 1035-1040.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 659 252 9
PDF Downloads 374 147 10