Distribution of non-allelic histone H1 subtypes in five avian species

Open access


The arrays of histone H1 subtypes from five avian species (chicken, grey partridge, pheasant, quail and duck) were compared to evaluate their intra- and inter-species variability. The electrophoretic patterns of linker histone preparations revealed the presence of subtypes that occur in all species (H1.a, H1.b, H1.c, H1.c′, H1.d and H5) and those which are confined to some species only (H1.a′, H1.b′, H1.z). In the densitometric profiles of histone H1 bands resolved in one-dimension acetic acid-urea polyacrylamide gel, the quantitative differences were observed both within a species (the ratio of H1.b to H1.d = 8.13 in quail) and between species (the ratio of H1.d in grey partridge and quail = 8.37). The comparable levels of abundant histone H5 that constitute from 53.62% (quail) to 60.86% (duck) of whole linker histone complement were detected in all species. Likewise, the quantification of H1 protein spots separated in a two-dimension SDS-polyacrylamide gel indicated that their intensity ratios could vary up to about 17-fold within a species (the ratio of H1.d to H1.a′ in grey partridge) and up to 10-fold between species (the ratio of pheasant H1.d to quail H1.d). Differences (P<0.05) in the histone H1 subtype levels were found both within and between avian species. A low to moderate range for the coefficients of H1 spot variation (from 0.13 to 0.72) was obtained for several independent histone H1 preparations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ajiro K. Borun T.W. Solter D. (1981). Quantitative changes in the expression of histone H1 and H2Bsubtypes and their relationship to the differentiation of mouse embryonal carcinoma cells. Dev. Biol. 86: 206-211.

  • Bhan S. May W. Warren S.L. Sittman D.B. (2008). Global gene expression analysis reveals specific and redundant roles for H1 variants H1c and H10 in gene expression regulation. Gene 414: 10-18.

  • Catez F. Ueda T. Bustin M. (2006). Determinants of histone H1 mobility and chromatin binding in living cells. Nat. Struct. Mol. Biol. 13: 305-310.

  • Clausell J. Happel N. Hale T.K. Doenecke D. Beato M. (2009). Histone H1 subtypes differently modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNFor NURF. PLo S One 4: e0007243. doi:

    • Crossref
    • Export Citation
  • Daujat S. Zeissler U. Waldmann T. Happel N. Schneider R. (2005). HP1 binds specifically to Lys26-methylated histone H1.4 whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 280: 38090-38095.

  • Fan Y. Sirotkin A.M. Russel R.G. Ayala J. Skoultchi A.I. (2001). Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol. Cell. Biol. 21: 7933-7943.

  • Fan Y. Nikitina T. Zhao J. Fleury T.J. Bhattacharyya R. Bouhassira E.E. Stein A. Woodcock C.L. Skoultchi A.I. (2005). Histone H1 depletion in mammals alter global chromatin structure but causes specific changes in gene regulation. Cell 123: 1199-1212.

  • Garg M. Perumalsamy L.R. Shivashankar G.V. Sarin A. (2014). The linker histone H1.2 is an intermediate in the aptoptotic response to cytokine deprivation in T-effectors. Int. J. Cell Biol. 2014: 674753. doi:

    • Crossref
    • Export Citation
  • Hansen J.C. (2002). Conformational dynamics of the chromatin fiber in solution: determinants mechanisms and functions. Ann. Rev. Biophys. Biomol. Struct. 31: 361-392.

  • Happel N. Doenecke D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431: 1-12.

  • Happel N. Warneboldt J. Hänecke K. Haller F. Doenecke D. (2009). H1 subtype expression during cell proliferation and growth arrest. Cell Cycle 8: 2226-2232.

  • Hashimoto H. Takami Y. Sonoda E. Iwasaki T. Iwano H. Tachibana M. Takeda S. Nakayama T. Kimura H. Shinkai Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res. 38: 3533-3545.

  • Hergeth S.P. Schneider R. (2015). The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16: 1439-1453.

  • Izzo A. Schneider R. (2016). The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim. Biophys. Acta 1859: 486-495.

  • Izzo A. Kamieniarz K. Schneider R. (2008). The histone H1 family: specific members specific functions? Biol. Chem. 389: 333-343.

  • Izzo A. Kamieniarz - Gdula K. Ramirez F. Noureen N. Kind J. Manke T.van Steensel B. Schneider R. (2013). The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep. 3: 2142-2154.

  • Kalashnikova A.A. Rogge R.A. Hansen J.C. (2016). Linker histone H1 and protein-protein interactions. Biochim. Biophys. Acta 1859: 455-461.

  • Kavi H. Lu X. Xu N. Bartholdy B.A. Vershilova E. Skoultchi A.I. Fyodorov D.V. (2015). Agenetic screen and transcript profiling revealedashared regulatory program for Drosophila linker histone H1 and chromatin remodeler CHD1. G3 5: 677-687.

  • Kowalski A. (2015). Abundance of intrinsic structural disorder in the histone H1 subtypes. Comput. Biol. Chem. 59: 16-27.

  • Kowalski A. Pałyga J. (2011). Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT. Chromosome Res. 19: 579-590.

  • Kowalski A. Pałyga J. (2012 a). Linker histone subtypes and their allelic variants. Cell Biol. Int. 36: 981-996.

  • Kowalski A. Pałyga J. (2012 b). High-resolution two-dimensional polyacrylamide gel electrophoresis: Atool for identification of polymorphic and modified linker histone components. In: Gel Electrophoresis - Principles and Basics Magdeldin S. (ed.). In Tech (Croatia) pp. 117-136.

  • Kowalski A. Pałyga J. (2016). Modulation of chromatin function through linker histone H1 variants. Biol. Cell 108: 1-18.

  • Koutzamani E. Loborg H. Sarg B. Lindner H.H. Rundquist I. (2002). Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes. J. Biol. Chem. 227: 44688-44694.

  • Lennox R.W. Cohen L.H. (1984). The alterations in histone H1 complement during mouse spermatogenesis and their significance for H1 subtype function. Dev. Biol. 103: 80-84.

  • Lu H. Hamkalo B. Parseghian M.H. Hansen J.C. (2009). Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48: 164-172.

  • Medrzycki M. Zhang Y. Cao K. Fan Y. (2012). Expression analysis of mammalian linkerhistone subtypes. J. Vis. Exp. (61). doi:

    • Crossref
    • Export Citation
  • Meergans T. Albig W. Doenecke D. (1997). Varied expression patterns of human histone H1 genes in different cell lines. DNA Cell Biol. 16: 1041-1049.

  • Millãn- Ariño L. Izquierdo-Bouldstridge A. Jordan A. (2016). Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochim. Biophys. Acta 1859: 510-519.

  • Montes de Oca R. Lee K.K. Wilson K.L. (2005). Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J. Biol. Chem. 280: 42252-42262.

  • Neelin J.M. Neelin E.M. Lindsay D.W. Pałyga J. Nichols C.R. Cheng K.M. (1995). The occurrence ofamutant dimerizable histone H5 in Japanese quail erythrocytes. Genome 38: 982-990.

  • Ni J.Q. Liu L.P. Hess D. Rietdorf J. Sun F.L. (2006). Drosophila ribosomal proteins are associated with linker histones H1 and suppress gene transcription. Gene. Dev. 20: 1959-1973.

  • Over R.S. Michaels S.D. (2014). Open and closed: the roles of linker histones in plants and animals. Mol. Plant 7: 481-491.

  • Pałyga J. (1991). Acomparison of the histone H1 complements of avian erythrocytes. Int. J. Biochem. 23: 845-849.

  • Parseghian M.H. (2015). What is the role of histone H1 heterogeneity? AIMS Biophys. 2: 724-772.

  • Parseghian M.H. Newcomb R.L. Winokur S.T. Hamkalo B.A. (2000). The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res. 8: 405-424.

  • Peng Z. Mizianty M.J. Xue B. Kurgan L. Uversky V.N. (2012). More than just tails: intrinsic disorder in histone proteins. Mol. Biosyst. 8: 1886-1901.

  • Routh A. Sandin S. Rhodes D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA 105: 8872-8877.

  • Sarg B. Lopez B. Lindner H. Ponte I. Suau P. Roque A. (2014). Sequence conservation of linker histones between chicken and mammalian species. Data Brief 1: 60-64.

  • Sarg B. Lopez R. Lindner H. Ponte I. Suau P. Roque A. (2015). Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J. Proteomics 113: 162-177.

  • Shannon M.F. Wells J.R.E. (1987). Characterization of the six chicken histone H1 proteins and alignment with their respective genes. J. Biol. Chem. 262: 9664-9668.

  • She W. Grimanelli D. Rutowicz K. Whitehead M.W.J. Puzio M. Kotliński M. Jerzmanowski A. Baroux C. (2013). Chromatin reprogramming during the somatic-toreproductive cell fate transition in plants. Development 140: 4008-4019.

  • Soria G. Polo S.E. Almouzni G. (2012). Prime repair restore: the active role of chromatin in the DNAdamage response. Mol. Cell 46: 722-734.

  • Talbert P.B. Ahmad K. Almouzni G. Ausio J. Berger F. Bhalla P.L. Bonner W.M. Cande W.Z. Chadwick B. Chan S.W.L. Cross G.A.M Cui L. Dimitrov S.I. Doenceke D. Eirin-Lopez J.M. Gorovsky M.A. Hake S.B. Hamkalo B.A. Holec S. Jacobsen S.E. Kamieniarz K. Kchohbin S. Ladurner A.G. Landsman D. Latham J.A. Loppin B. Malik H.S. Marzluff W.F. Pehrson J.R. Postberg J. Schneider R. Singh M.B. Smith M.M. Thompson E. Torres - Padilla M-E. Tremethick D.J. Turner B.M. Waterborg J.H. Wollmann H. Yelagandula R. Zhu B. Henikoff S. (2012). Aunified phylogeny-based nomenclature for histone variants. Epigenet. Chromatin 5: 7. doi:

    • Crossref
    • Export Citation
  • Th’ng J.P. Sung R. Ye M. Hendzel M.J. (2005). H1 family histone in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem. 280: 27809-27814.

  • Yang S-M. Kim B.J. Norwood Toro L. Skoultchi A.I. (2013). H1 linker histone promotes epigenetic silencing by regulating both DNAmethylation and histone H3 methylation. Proc. Natl. Acad. Sci. USA 110: 1708-1713.

  • Zhang Y. Liu Z. Medrzycki M. Cao K. Fan Y. (2012). Reduction of Hox gene expression by histone H1 depletion. PLo S One 7:e38829. doi:

    • Crossref
    • Export Citation
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 142 2
PDF Downloads 118 81 2