20. The Effect of Muscle Type and Time of Storage on Myofibrillar Protein Proportion in Beef


Tenderness is usually associated with the proteolysis occurring in muscles. However, most of the studies concentrate on one muscle only. The aim of this study was to describe the changes in myofibrillar protein percentage proportions during the ageing of 8 bovine muscles. Investigations were conducted on the muscles from different parts of the carcass, from the forequarter: m. pectoralis profundus, m. infraspinatus, m. triceps brachii, m. serratus ventralis, and from the hindquarter: m. biceps femoris, m. semimembranosus, m. semitendinosus and m. longissimus dorsi (thoracis et lumborum). The effect of muscle type was significant for all parameters except for percentage proportions of titin (3000÷3700 kDa), MHC (205 kDa) and protein fractions between <205÷42> kDa. Differences between the muscles varied depending on the analysed proteins and the time of storage. A significant effect of ageing time for titin, nebulin (approx. 800 kDa), proteins of molecular weight of 38 kDa, proteins smaller than 42 kDa and in the range of 3000÷205 kDa, 205÷42 kDa and 38÷20 kDa was observed. The decrease of percentage proportions of titin, nebulin and proteins in the range of 3000÷205 kDa and an increase of protein bands in the range of 38÷20 kDa and proteins below 42 kDa was also observed. During the storage period of beef from the 2nd to the 14th day, the progress of myofibrillar proteolysis was different in each muscle. The changes of tenderness were not related to shear force values. It is probable that the changes in other constituents of meat might influence the tenderness more than those in myofibrillar proteins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bjarnadottir S.G., Hollung K., Faergestad E.M., Veiseth- Kent E. (2010). Proteome changes in bovine Longissimus thoracis muscle during the first 48hpostmortem: shifts in energy status and myofibrillar stability. J. Agr. Food Chem., 58: 7408-7414.

  • Chang K.C.,da Costa N., Blackley R., Southwood O., Evans G., Plastow G., Wood J.D., Richardson R.I. (2003). Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci., 64: 93-103.

  • Chen L., Li X., Ni N., Liu Y., Chen L., Wang Z., Shena O.W., Zhang D. (2015). Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness. J. Sci. Food Agric., DOI 10.1002/jsfa.7244.

  • Choi Y.M., Kim B.C. (2009). Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest. Sci., 122: 105-118.

  • Claeys E., De Smet S., Balcaen A., Raes K., Demeyer D. (2004). Quantification of fresh meat peptides by SDS-PAGEin relation to ageing time and taste intensity. Meat Sci., 67: 281-288.

  • Etlinger J.D., Zak R., Fischman D.A. (1976). Myofibrillar composition. J. Cell Biol., 68: 123-141.

  • Fritz J.D., Greaser M.L. (1991). Changes in titin and nebulin in postmortem bovine muscle revealed by gel electrophoresis, western blotting and immunofluorescence microscopy. J. Food Sci., 56: 607-610, 615.

  • Fritz J.D., Mitchell M.C., Marsh B.B., Greaser M.L. (1993). Titin content of beef in relation to tenderness. Meat Sci., 33: 41-50.

  • Gagaoua M., Terlouw E.M., C., Boudjellal A., Picard B. (2015). Coherent correlation networks among protein biomarkers of beef tenderness: What they reveal. J. Proteomics, 128: 365-374.

  • Gil M., Ramírez J.A., Pla M., Ariño B., Hernández P., Pascual M., Blasco A., Guerrero L., Hajós G., Szerdahelyi E.I., Oliver M.A. (2006). Effect of selection for growth rate on the ageing of myofibrils, meat texture properties and the muscle proteolytic potential of m. longissimus in rabbits. Meat Sci., 72: 121-129.

  • Grześ B., Pospiech E., Koćwin- Podsiadła M., Łyczyński A., Krzęcio E., Miko - łajczak B., Iwańska E., (2010). Relationship between the polymorphism of myosin heavy chains and selected meat quality traits of pigs with different susceptibility to stress. Arch. Tierzucht, 53: 65-72.

  • Grześkowiak E., Borzuta K., Wichłacz H., Strzelecki J. (2002). Sensory traits of 13 culinary cuts obtained from carcasses of young Black-and-White slaughter cattle. Anim. Sci. Pap. Rep., 20, suppl.: 179-186.

  • Herrera-Mendez C.H., Becila S., Boudjellal A., Ouali A. (2006). Meat ageing: Reconsideration of the current concept. Trends Food Sci. Tech., 17: 392-405.

  • Ho C.Y., Stromer M.H., Robson R.M. (1994). Identification of the 30k Da polypeptide in postmortem skeletal muscle asadegradation product of troponin-T. Biochimie, 76: 369-375.

  • Huff-Lonergan E., Parrish F.C. Jr, Robson R.M. (1995). Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. J. Anim. Sci., 73: 1064-1073.

  • Iwanowska A., Iwańska E., Grześ B., Mikołajczak B., Pospiech E., Rosochac - ki S., Juszczuk-Kubiak E., Łyczyński A. (2010). Changes in proteins and tenderness of meat from young bulls of four breeds at three ages over 10 days of cold storage. Anim. Sci. Pap. Rep., 28: 13-25.

  • Iwanowska A., Grześ B., Mikołajczak B., Iwańska E., Rosochacki S., Jusz - czuk- Kubiak E., Pospiech E., (2011). Impact of polymorphism of the regulatory subunit of theμ-calpain (CAPN1S) on the proteolysis process and meat tenderness of young cattle. Mol. Biol. Rep., 38: 1295-1300.

  • Kołczak T., Pospiech E., Palka K., Łącki J. (2003). Changes of myofibrillar and centrifugal drip proteins and shear force of psoas major and minor and semitendinosus muscles from calves, heifers and cows during post-mortem ageing. Meat Sci., 64: 69-75.

  • Lepetit J.A. (2007). Theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci., 76: 147-159.

  • Lomiwes D., Farouk M.M., Wu G.,. Young O.A. (2014). The development of meat tenderness is likely to be compartmentalized by ultimate p H. Meat Sci., 96: 646-651.

  • Maltin C., Balcerzak D., Tilley R., Delday M. (2003). Determinants of meat quality: tenderness. P. Nutr. Soc., 62: 337-347.

  • Maltin C.A., Sinclair K.D., Warriss P.D., Grant C.M., Porter A.D., Delday M.I., Warkup C.C., (1998). The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fibre type characteristics and eating quality of bull beef from suckled calves. Anim. Sci., 66: 341-348.

  • Marino R., Albenzio M., Della Malva A., Santillo A., Loizzo P., Sev A. (2013). Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Sci., 95: 281-287.

  • Marino R., Della Malva A., Albenzio M. (2015). Proteolytic changes of myofibrillar proteins in Podolian meat during aging: focusing on tenderness. J. Anim. Sci., 93:1376-1387. DOI: 10.2527/jas.2014-8351.

  • Muroya S., Nakajima I., Oe M., Chikuni K. (2006). Difference in postmortem degradation pattern among troponin Tisoforms expressed in bovine longissimus diaphragm, and masseter muscles. Meat Sci., 72: 245-251.

  • Muroya S., Ertbjerg P., Pomponio L., Christensen M. (2010). Desmin and troponin T are degraded faster in type IIb muscle fibers than in type Ifibers during postmortem aging of porcine muscle. Meat Sci., 86: 764-769.

  • Murray B.E. (1997). Abiochemical and structural study of easily releasable myofilaments in skeletal muscle. Ph D Thesis, University College Cork.

  • Ngapo T.M., Bergea P., Culioli J., Dransfield E.,de Smet S., Claeys E. (2002). Perimysial collagen crosslinking and meat tenderness in Belgian Blue double-muscled cattle. Meat Sci., 61: 91-102.

  • Nowak M., O’Sullivan A., Maher S., Troy D.J. (2004). Effect of muscle type and cooking method on eating quality of beef. Proceedings of the International Food Conference“Thinking beyond tomorrow”, Dublin, p. 168.

  • Olson D.G., Parrish F.C., Dayton W.R., Goll D.E. (1977). Effect of postmortem storage and calcium activated factor on the myofibrillar proteins of bovine skeletal muscle. J. Food Sci., 42: 117-124.

  • Ouali A., Talmant A. (1990). Calpains and calpastatin distribution in bovine, porcine and ovine skeletal muscles. Meat Sci., 28: 331-348.

  • Palka K. (2003). The influence of post-mortem ageing and roasting on the microstructure, texture and collagen solubility of bovine semitendinosus muscle. Meat Sci., 64: 191-198.

  • Porzio M.A., Pearson A.M., Cornforth D.P., (1979). M-line protein: presence of two nonequivalent high molecular weight components. Meat Sci., 3: 31-41.

  • Pospiech E., Greaser M., Mikołajczak B., Szalata M., Łyczyński A. (2000). Degradation and release of titin in pork muscles. Proc. 46th ICo MST, Buenos Aires, Argentine, 4.I-P1: pp. 426-427.

  • Pospiech E., Grześ B., Łyczyński A., Borzuta K., Szalata M., Mikołajczak B. (2003). Muscle proteins and their changes in the process of meat tenderization. Anim. Sci. Pap. Rep., 21, Supl. 1: 133-151.

  • Purslow P.P. (2005). Intramuscular connective tissue and its role in meat quality. Meat Sci., 70: 435-447.

  • Sawdy J.C., Kaiser S.A., St-Pierre N.R., Wick M.P. (2004). Myofibrillar 1-Dfingerprints and myosin heavy chain MSanalyses of beef loin at 36hpostmortem correlate with tenderness at 7 days. Meat Sci., 67: 421-426.

  • Sazili A.Q., Parr T., Sensky P.L., Jones S.W., Bardsley R.G., Buttery P.J. (2005). The relationship between slow and fast myosin heavy chain content, calpastatin and meat tenderness in different ovine skeletal muscles. Meat Sci., 69: 17-25.

  • Shackelford S.D., Weeler T.L., Koomaraie M. (1995). Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos taurus cattle. J. Anim. Sci., 73: 3333-3340.

  • Sierra V., Fernandez- Suarez V., Castro P., Osoro K., Vega-Naredo I., Garcıa--Macıa M., Rodrıguez-Colunga P., Coto-Montes A., Olivan M. (2012). Identification of biomarkers of meat tenderisation and its use for early classification of Asturian beef into fast and late tenderising meat. J. Sci. Food Agr., 92: 2727-2740.

  • Szalata M. (2003). Determination of relationship between proteolytic enzyme activity of pork from pigs of various meatiness (in Polish). (Ph Ddissertation). Wydział TechnologiiŻywności Akademii Rolniczejw Poznaniu.

  • Taylor R.G., Geesink G.H., Thompson V.F., Koohmaraie M., Goll D.E. (1995). Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci., 73: 1351-1367.

  • Tomaszewska-Gras J., Schreurs F.J.G., Kijowski J. (2011). Post mortem development of meat quality as related to changes in cytoskeletal proteins of chicken muscles. Brit. Poultry Sci., 52: 189-201.

  • Watanabe A., Devine C. (1996). Effect of meat ultimate p Hon rate of titin and nebulin degradation. Meat Sci., 42: 407-413.

  • Wu G., Clerens S., Farouk M.M. (2014 a). LC MS/MSidentification of large structural proteins from bull muscle and their degradation products during post mortem storage. Food Chem., 150: 137-144.

  • Wu G., Farouk M.M., Clerens S., Rosenvold K. (2014 b). Effect of beef ultimate p Hand large structural protein changes with aging on meat tenderness. Meat Sci., 98: 637-645.

  • Xiong Y.L., Mullins O.E., Stika J.F., Chen J., Blanchard S.P., Moody W.G. (2007). Tenderness and oxidative stability of post-mortem muscles from mature cows of various ages. Meat Sci., 77: 105−113.


Journal + Issues