2. Beneficial Aspects of Inulin Supplementation as a Fructooligosaccharide Prebiotic in Monogastric Animal Nutrition – A Review

Open access


Inulin is widely used as a prebiotic additive in the nutrition of farm animals and pets. This fructooligosaccharide demonstrates a beneficial effect on host health by stimulating the growth and development of commensal bacterial species inhabiting the large intestine. Used for example in the feeding of piglets, inulin greatly enhances their daily body weight gains and also reduces the risk of anemia (Tako et al., 2008). In poultry, in the case of meat breeds, inulin provides better feed utilization, increases the daily gains and the final carcass weight (Ammerman et al., 1988). In laying hens, it positively stimulates the production of eggs (Chen et al., 2005). The addition of prebiotics in the diet of dogs has a positive effect on the concentration of the end products of sugar and protein fermentation in the colon, thus contributing to the health status and good condition of the animal (Flickinger et al., 2003 b; Middelbos et al., 2007). Moreover, inulin beneficially affects the efficiency of the immune system of the organism (including the anticarcinogenic properties) (Kelly-Quagliana et al., 1998), as well as lipids and the cholesterol metabolism by effectively reducing their concentrations in the blood serum (Grela et al., 2014 a). This paper characterizes inulin as a prebiotic additive in the diet of selected species of monogastric animals. In addition, data about the hypolipidemic and immunostimulatory properties of inulin are presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ammerman E. Quarles C. Twining P.V. (1988). Broiler response to the addition of dietary fructooligosaccharides. Poultry Sci. 67 p. 46.

  • Awad W.A. Ghareeb K. Paßlack N. Zentek J. (2013). Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res. Vet. Sci. 95: 249-254.

  • Bailey J.S. Blankenship L.C. Cox N.A. (1991). Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poultry Sci. 70: 2433-2438.

  • Bednarczyk M. Urbanowski M. Gulewicz P. Kasperczyk K. Maiorano G. Szwaczkowski T. (2011). Field and in vitro study on prebiotic effect of raffinose family oligosaccharides in chickens. Bull. Vet. Inst. Pulawy 55: 465-469.

  • Beloshapka A.N. Duclos L.M. Vester Boler B.M. Swanson K.S. (2012). Effects of inulin or yeast cell-wall extract on nutrient digestibility fecal fermentative end-product concentrations and blood metabolite concentrations in adult dogs fed raw meat-based diets. Am. J.Vet. Res. 73: 1016-1023.

  • Beloshapka A.N. Dowd S.E. Suchodolski J.S. Steiner J.M. Duclos L. Swan - son K.S. (2013). Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol. 84: 532-541.

  • Berg R.D. (1985). Indigenous intestinal microflora and the host immune response. EOS J. Immunol. Immunopharmacol. 4: 161-168.

  • Chen Y.C. Nakthong C. Chen T.C. (2005). Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin. Int. J. Poultry Sci. 4: 103-108.

  • Coudray C. Feillet- Coudray C. Gueux E. Mazur A. Rayssiguier Y. (2006). Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J. Nutr. 136: 117-122.

  • Dankowiakowska A. Kozłowska I. Bednarczyk M. (2013). Probiotics prebiotics and synbiotics in poultry - mode of action limitation and achievements. J. Cent. Eur. Agric. 14: 467-478.

  • Estrada A. Drew M.D. Van Kessel A. (2001). Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Can. J. Anim. Sci. 81: 141-148.

  • Flickinger E.A. Van Loo J. Fahey Jr G.C. (2003 a). Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: Areview. Cr. Rev. Food Sci. Nutri. 43: 19-60.

  • Flickinger E.A. Schreijen E.M.W.C. Patil A.R. Hussein H.S. Grieshop C.M. Merchen N.R. Fahey Jr G.C. (2003 b). Nutrient digestibilities microbial populations and protein catabolites as affected by fructan supplementation of dog diets. J. Anim. Sci. 81: 2008-2018.

  • Gibson G.R. Pereira D.I.A. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Cr. Rev. Bioch. Mol. Biol. 37: 259-281.

  • Grela E.R. Pietrzak K. Sobolewska S. Witkowski P. (2013). Effect of inulin and garlic supplementation in pig diets. Ann. Anim. Sci. 13: 63-71.

  • Grela E.R. Sobolewska S. Kowalczuk- Vasilev E. Krasucki W. (2014 a). Effect of dietary inulin source on piglet performance immunoglobulin concentration and plasma lipid profile. Bull. Vet. Inst. Pulawy. 58: 453-458.

  • Grela E.R. Sobolewska S. Roziński T. (2014 b). Effect of inulin extracts or inulin-containing plant supplement on blood lipid indices and fatty acid profile in fattener tissues. Pol. J. Vet. Sci. 17: 93-98.

  • Halas D. Hansen C.F. Hampson D.J. Kim J.C. Mullan B.P. Wilson R.H. Plus - ke J.R. (2010). Effects of benzoic acid and inulin on ammonia-nitrogen excretion plasma urea levels and the p Hin faeces and urine of weaner pigs. Livestock Sci. 134: 243-245.

  • Hansen C.F. Phillips N.D. La T. Hernández A. Mansfield J. Kim J.C. Mul- lan B.P. Hampson D.J. Pluske J.R. (2010). Diets containing inulin but not lupins help to prevent swine dysentery in experimentally challenged pigs. J. Anim. Sci. 88: 3327-3336.

  • Hansen C.F. Hernández A. Mansfield J. HidalgoÁ. La T. Phillips N.D. Hamp - son D.J. Pluske J.R. (2012). Ahigh dietary concentration of inulin is necessary to reduce the incidence of swine dysentery. Brit. J. Nutr. 106: 1506-1513.

  • Hesta M. Debraekeleer J. Janssens G.P.J. De Wilde R. (2006). Effects of prebiotics in dog and cat nutrition: Areview. Trends in dietary carbohydrates research. Landlow M.V. ed. Nova Science Publishers pp. 179-219.

  • Hussein H.S. Flickinger E.A. Fahey Jr G.C. (1999). Pet food applications of inulin and oligofructose. J. Nutr. 129: 1454-1456.

  • Janczyk P. Pieper R. Smidt H. Souffrant W.B. (2010). Effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions. FEMS Microbiol. Ecol. 72: 132-142.

  • Kelly G. (2008). Inulin-type prebiotics -areview: part 1. Altern. Med. Rev. 13: 315-329.

  • Kelly- Quagliana K.A. Buddington R.K. Van Loo J. Nelson P.D. (1998). Immunomodulation by oligofructose and inulin. Faseb J. 12 p. 904.

  • Kim G.B. Seo Y.M. Kim C.H. Paik I.K. (2011). Effect of dietary prebiotic supplementation on the performance intestinal microflora and immune response of broilers. Poultry Sci. 90: 75-82.

  • Kjos N.P. Overland M. Fauske A.K. Sorum H. (2010). Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci. 134: 143-145.

  • Kleessen B. Blaut M. (2005). Modulation of gut mucosal biofilms. Br. J. Nutr. 93: 35-40.

  • Kolida S. Gibson G.R. (2007). Prebiotic capacity of inulin-type fructans. J. Nutr. 137: 2503-2506.

  • Lallès J.P. Bosi P. Janczyk P. Koopmans S.J. Torrallardona D. (2009). Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets:areview. Animal 3: 1625-1643.

  • Loh T.C. Wang W.S. Foo H.L. (2010). Effects of dietary protein and inulin on growth and nitrogen balance in growing pigs. J. Appl. Anim. Res. 38: 55-59.

  • Lomax A.R. Calder P.C. (2009). Prebiotics immune function infection and inflammation:areview of the evidence. Br. J. Nutr. 101: 633-658.

  • Loo J.V. (2007). How chicory fructans contribute to zootechnical performance and well-being in livestock and companion animals. J. Nutr. 137: 2594-2597.

  • Macfarlane G.T. Gibson G.R. (1997). Carbohydrate fermentation energy transduction and gas metabolism in the human large intestine. Gastrointest. Microbiol. pp. 269-318.

  • Metzler- Zebeli B.U. Ratriyanto A. Jezierny D. Sauer N. Eklund M. Mosen- thin R. (2009). Effects of betaine organic acids and inulin as single feed additives or in combination on bacterial populations in the gastrointestinal tract of weaned pigs. Arch. Anim. Nutr. 63: 427-441.

  • Middelbos I.S. Fastinger N.D. Fahey Jr G.C. (2007). Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J. Anim. Sci. 85: 3033-3044.

  • Milewski S. Wójcik R. Małaczewska J. Trapkowska S. Siwicki A.K. (2007). Effect ofß-13/16-D-glucan on meat performance and non-specific humoral defense mechanisms in lambs. Med. Weter. 63: 360-363.

  • Nabizadeh A. (2012). The effect of inulin on broiler chicken intestinal microflora gut morphology and performance. J. Anim. Feed Sci. 21: 725-734.

  • Niness K.R. (1999). Inulin and oligofructose: What are they? J. Nutr. 129: 1402-1406.

  • O’Shea C.J. Sweeney T. Bahar B. Ryan M.T. Thornton K. O' Doherty J.V. (2012). Indices of gastrointestinal fermentation and manure emissions of growing-finishing pigs as influenced through singular or combined consumption of Lactobacillus plantarum and inulin. J. Anim. Sci. 90: 3848-3857.

  • Patterson J.A. Burkholder K.M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Sci. 82: 627-631.

  • Petkevičius S. Bach Knudsen K.E. Murrell K.D. Wachmann H. (2003). The effect of inulin and sugar beet fibre on Oesophagostomum dentatum infection in pigs. Parasitology 127: 61-68.

  • Petkevičius S. Thomsen L.E. Bach Knudsen K.E. Murrell K.D. Roepstorff A. Boes J. (2007). The effect of inulin on new and on patent infections of Trichuris suis in growing pigs. Parasitology 134: 121-127.

  • Pinna C. Biagi G. (2014). The utilisation of prebiotics and synbiotics in dogs. Ital. J. Anim. Sci. 13: 169-178.

  • Propst E.L. Flickinger E.A. Bauer L.L. Merchen N.R. Fahey Jr G.C. (2003). Adoseresponse experiment evaluating the effects of oligofructose and inulin on nutrient digestibility stool quality and fecal protein catabolites in healthy adult dogs. J. Anim. Sci. 81: 3057-3066.

  • Rebolé A. Ortiz L.T. Rodríguez M.L. Alzueta C. Trevino J. Velasco S. (2010). Effects of inulin and enzyme complex individually or in combination on growth performance intestinal microflora cecal fermentation characteristics and jejunal histomorphology in broiler chickens fedawheat- and barley-based diet. Poultry Sci. 89: 276-286.

  • Rehman H. Rosenkranz C. Böhm J. Zentek J. (2007). Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers. Poultry Sci. 86: 118-122.

  • Reilly P. Sweeney T. Smith A.G. Pierce K.M. Gahan D.A. Callan J.J. O' Doher- ty J.V. (2010). The effects of cereal-derived beta-glucans and enzyme supplementation on intestinal microbiota nutrient digestibility and mineral metabolism in pigs. Livest. Sci. 133: 144-147.

  • Roberfroid M.B. (2007). Inulin-type fructans: functional food ingredients. J. Nutr. 137: 2493-2502.

  • Roberfroid M.B Van Loo J.A.E. Gibson G.R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128: 11-19.

  • Roller M. Rechkemmer G. Watzl B. (2004). Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J. Nutr. 134: 153-156.

  • Rossi M. Corradini C. Amaretti A. Nicolini M. Pompei A. Zanoni S. Mat- teuzzi D. (2005). Fermentation of fructooligosaccharides and inulin by Bifidobacteria:acomparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71: 6150-6158.

  • Russell T.J. (1998). The effect of natural source of non-digestible oligosaccharides on the fecal microflora of the dog and effects on digestion. Friskies R & D Center St. Joseph MO.

  • Samanta A.K. Jayapal N. Senani S. Kolte A.P. Sridhar M. (2013). Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Braz. J. Microbiol. 44: 1-14.

  • Schley P.D. Field C.J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. Brit. J. Nutr. 87: 221-230.

  • Scholz-Ahrens K.E. Schrezenmeir J. (2007). Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J. Nutr. 137: 2513-2523.

  • Sevane N. Bialade F. Velasco S. Rebolé A. Rodríguez M.L. Ortiz L.T. Ca - ñón J. Dunner S. (2014). Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLo S ONE 9(6): e98942.

  • Shim S.B. Williams I.H. Verstegen M.W.A. (2005). Effects of dietary fructo-oligosaccharidases on growth villous height and disaccharides activity of the small intestine p H VFAand ammonia concentration in the large intestine of weaned pigs. Acta. Agric. Scand. Section A-Anim. Sci. 55: 91-97.

  • Skowronek M. Fiedurek J. (2003). Insulin and insulinases - properties applications and possible future use (in Polish). Przem. Spoż. 3: 18-20.

  • Sobolewska S. Grela E.R. (2013). Effect of inulin extraction method and level in growing-finishing pig diets on performance carcass traits and nutrients digestibility. Annales Universitatis Mariae Curie-Skłodowska Lublin - Polonia 31: 56-64.

  • Sobolewska S. Samolińska W. Skomiał J. Grela E. R. (2014). Effect of inulin content and extract type on short-chain fatty acid concentration in the large intestine and lipid parameters in fattener blood. Vet. Med.-Sci. Pract. 70: 296-301.

  • Strompfová V. Lauková A. Cilik D. (2013). Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs. Canadian J. Microbiol. 59: 347-352.

  • Swanson K.S. Grieshop C.M. Flickinger E.A. Bauer L.L. Healy H.P. Daw- son K.A. Merchen N.R. Fahey Jr G.C. (2002). Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function ileal and total tract nutrient digestibilities microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 132: 980-989.

  • Szymeczko R. Głowińska B. Burlikowska K. Piotrowska A. Bogusławska- - Tryk M. Kozłowska I. Brudnicki A. Pietruszyńska D. (2013). Characteristics of selected peripheral blood parameters in polar fox (Alopex lagopus L.) fed diets with inulin. Folia Biol.-Krakow 61: 113-118.

  • Tako E. Glahn R.P. Welch R.M. Lei X. Yasuda K. Mille D.D. (2008). Dietary inulin affects the expression of intestinal enterocyte iron transporters receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr. 99: 472-480.

  • Topping D.L. (1996). Short-chain fatty acids produced by intestinal bacteria. Asia Pacific J. Clin. Nutr. 5: 15-19.

  • Trautwein E.A. Rieckhoff D. Erbersdobler H.F. (1998). Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr. 128: 1937-1943.

  • van de Wiele T. Boon N. Possemiers S. Jacobs H. Verstraete W. (2007). Inulintype fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 102: 452-460.

  • Verdonk J.M.A.J. Shim S.B.van Leeuwen P. Verstegen M.W.A. (2005). Application of inulin-type fructans in animal feed and pet food. Brit. J. Nutr. 93: 125-138.

  • Watzl B. Girrbach S. Roller M. (2005). Inulin oligofructose and immunomodulation. Brit. J. Nutr. 93: 49-55.

  • Wegener H.C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6: 439-445.

  • Wesoły R. Weiler U. (2012). Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2: 221-242.

  • Windisch W. Schedle K. Plitzner C. Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86: 140-148.

  • Wójcik R. Małaczewska J. Trapkowska S. Siwicki A.K. (2007). Influence ofß-13/16-D- glucan on non-specific cellular defence mechanisms in lambs. Med. Weter. 63: 84-86.

  • Xu Z.R. Hu C.H. Xia M.S. Zhan X.A. Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities intestinal microflora and morphology of male broilers. Poultry Sci. 82: 1030-1036.

  • Yasuda K. Roneker K.R. Miller D.D. Welch R.M. Lei X.G. (2006). Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J. Nutr. 136: 3033-3038.

  • Yasuda K. Maiorano R. Welch R.M. Miller D.D. Lei X.G. (2007). Cecum is the major degradation site of ingested inulin in young pigs. J. Nutr. 137: 2399-2404.

  • Yusrizal Chen T.C. (2003 a). Effect of adding chicory fructans in feed on broiler growth performance serum cholesterol and intestinal length. Int. J. Poultry Sci. 2: 214-219.

  • Yusrizal Chen T.C. (2003 b). Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. Int. J. Poultry Sci. 2: 188-194.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 640 344 9
PDF Downloads 279 161 9