Genetic Relationships Among Linear Type Traits and Milk Production Traits of Holstein Dairy Cattle

Mehdi Bohlouli 1 , Sadegh Alijani 2  and Mehran Rahimi Varposhti 3
  • 1 Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
  • 2 Department of Animal Science, University of Tabriz, Tabriz, Iran
  • 3 Arian Delta Gene Company

Abstract

The aim of this study was to estimate genetic relationships among milk production and linear type traits of Holstein dairy cattle from seven herds in Isfahan province of Iran. Phenotypic data was collected from 2004 to 2012 and included milk yield (MY), fat yield (FY) and protein yield (PY) for first three lactations, six body traits (stature, ST; chest width, CW; body depth, BD; angularity, AN; rump angle, RA; rump width, RW), three feet and legs traits (rear legs side view, RLSV; rear legs rear view, RLRV; foot angle, FA) and eight udder traits (fore udder attachment, FUA; rear udder height, RUH; rear udder width, RUW; central ligament, CL; udder depth, UD; fore teat placement, FTP; rear teat placement, RTP; teat length, TL). The number of animals for each linear type trait was 3505. Multi-trait animal models were used to estimate the (co)variance components based on restricted maximum likelihood method (REML) using WOMBAT software. Heritability estimates of first, second and third lactations for MY were 0.28, 0.41 and 0.36; for FY were 0.22, 0.23 and 0.36 and for PY were 0.31, 0.33 and 0.25, respectively. The heritability estimates ranged from 0.17±0.04 to 0.24±0.04 for body traits, 0.06±0.03 to 0.15±0.04 for feet and leg traits and from 0.12±0.04 to 0.25±0.05 for udder traits. Genetic correlations among the recorded type traits ranged from -0.76±0.01 (between AN and RLRV) to 0.65±0.02 (between AN and RW). The low to moderate positive genetic correlations between AN and FUA with milk production traits indicate that cows with high AN and good FUA have higher milk, fat and protein yields. The results of this study indicated that considerable genetic variation exists for different type traits within this sample of the Iranian Holstein population and additive genetic variability of type traits can provide moderate genetic gains through selection.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abdullahpour R., Moradi Shahrbabak M., Nejati-Javaremi A., Vaez Torshi - zi R., Mrode R. (2013). Genetic analysis of milk yield, fat and protein content in Holstein dairy cows in Iran: Legendre polynomials random regression model applied. Archiv. Tierzucht., 48: 497-508.

  • Bakhtiarizadeh M.R., Moradi Shahrbabak M. (2010). An estimation of the lactation curve parameters through incomplete gamma function andadetermination of the genetic relationship between these parameters and udder traits, in Holstein population of Iran (in Persian). J. Iranian Anim. Sci., 41: 1-10.

  • Berry D.P., Buckley F., Dillon P., Evans R.D., Rath M., Veerkamp R.F. (2003). Genetic relationships among body condition score, body weight, milk yield and fertility in dairy cows. J. Dairy Sci., 86: 2193-2204.

  • Berry D.P., Buckley F., Dillon P., Evans R.D., Rath M., Veerkamp R.F. (2004). Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish J. Agr. Food Res., 43: 161-176.

  • Bohlouli M., Shodja J., Alijani S., Eghbal A. (2013). The relationship between temperature- humidity index and test-day milk yield of Iranian Holstein dairy cattle using random regression model. Livest Sci., 157: 414-420.

  • Brotherstone S. (1994). Genetic and phenotypic correlations between linear type traits and production traits in Holstein-Friesian dairy cattle. Anim. Prod., 59: 183-187.

  • Campos R.V., Cobuci J.A., Costa C.N., Neto J.B. (2012). Genetic parameters for type traits in Holstein cows in Brazil. R. Bras. Zootec., 41: 2150-2161.

  • Costa C.N., Cobuci J.A., Freitas A.F., Teixeira N.M., Barra R.B., Valloto A.A. (2005). Genetic parameters for type traits of Brazilian Holstein cattle. Proc. 56th Annual Meeting of the EAAP.

  • De Groot B.J., Keown J.F., Van Vleck L.D., Marotz E.L. (2002). Genetic parameters and responses of linear type, yield traits, and somatic cell scores to divergent selection for predicted transmitting ability for type in Holsteins. J. Dairy Sci., 85: 1578-1585.

  • De Roos A.P.W., Harbers A.G.F., De Jong G. (2004). Random herd curves inatest-day model for milk, fat, and protein production of dairy cattle in the Netherlands. J. Dairy Sci., 87: 2693-2701.

  • Hammami H., Rekik B., Soyeurt H., Ben Gara A., Gengler N. (2008). Genetic parameters for Tunisian Holsteins usingatest-day random regression model. J. Dairy Sci., 91: 2118-2126.

  • Jakobsen J.H., Madsen P., Jensen J., Pedersen J., Christensen L.G., Soren- sen D.A. (2002). Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J. Dairy Sci., 85: 1607-1616.

  • Larroque H., Ducrocq V. (1999). An indirect approach for the estimation of genetic correlations between longevity and other traits. Proc. 4th International Workshop on Genetic Improvement of Functional Traits in Cattle. Interbull Bulletin, 21, Jouy-en-Josas, France, pp. 128-135.

  • Larroque H., Ducrocq V. (2001). Relationship between type and longevity in the Holstein breed. Gen. Sel. Evol., 33: 39-59.

  • Liu S.B., Huize T., Lu Y., Jianming Y. (2014). Genetic parameter estimates for selected type traits and milk production traits of Holstein cattle in southern China. Turk. J. Vet. Anim. Sci., 38: 552-556.

  • Lund T., Miglior F., Dekkers J.C.M., Burnside E.B. (1994). Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest. Prod. Sci., 39: 243-251.

  • Meyer K. (2007). Wombat -aprogram for mixed model analyses by restricted maximum likelihood. User notes. J. Zhejiang Univ. Sci. B, 8: 815-821, Animal Genetics and Breeding Unit, Armidale.

  • Meyer K., Brotherstone S., Edwards M.R., Hill W.G. (1987). Inheritance of linear type traits in dairy cattle and correlations with milk production. Anim. Prod., 44: 1-10.

  • Miglior F., Muir B.L., Van Doormaal B.J. (2005). Selection indices in Holstein cattle of various countries. J. Dairy Sci., 88: 1255-1263.

  • Mohammadi A., Alijani S. (2014). Estimation of genetic parameters and comparison of random regression animal and sire models of production traits in the first three lactation Iranian Holsteins. Biotech. Anim. Husb., 30: 261-279.

  • Mohammadi A., Alijani S., Daghighkia H. (2014). Comparison of different polynomial functions in random regression model for milk production traits of Iranian Holstein dairy cattle. Ann. Anim. Sci., 14: 55-68.

  • Muir B.L., Kistemaker G., Jamrozik J., Canavesci F. (2007). Genetic parameters foramultiple-trait multiple-lactation random regression test-day model in Italian Holsteins. J. Dairy Sci., 90: 1564-1574.

  • Nemcova E., Stipkova M., Zavadilova L. (2011). Genetic parameters for linear type trait in Czech Holstein cattle. Czech J. Anim. Sci., 56: 157-162.

  • Norman H.D., Powell R.L., Wright J.R., Cassell B.G. (1988). Phenotypic and genetic relationship between linear functional type traits and milk yield for five breeds. J. Dairy Sci., 71: 1880-1896.

  • Pahlevan R., Moghimi Esfandabadi A. (2010). Study of production, reproduction and type traits ina Holstein population (in Persian). J. Anim. Sci. (Iran), 3: 1-12.

  • Pérez- Cabal M.A., Alenda R. (2002). Genetic relationships between lifetime profit and type traits in Spanish Holstein cows. J. Dairy Sci., 85: 3480-3491.

  • Pérez- Cabal M.A., Garcia C., Gonzales-Recio O. (2006). Genetic and phenotypic relationship among locomotion, type traits, profit, production, longevity and fertility in Spanish dairy cows. J. Dairy Sci., 89: 1776-1783.

  • Pryce J.E., Esslemont R.J., Thompson R., Veerkamp R.F., Kossaibati M.A., Simm G. (1998). Estimation of genetic parameters using health, fertility and production data fromamanagement recording system for dairy cattle. J. Anim. Sci., 66: 577-584.

  • Samore A.B., Rizzi R., Rossoni A., Bagnato A. (2010). Genetic parameters for functional longevity, type traits, somatic cell scores, milk flow and production in the Italian Brown Swiss. Italian J. Anim. Sci., 9: 145-152.

  • Schaeffer G.B., Vinson W.E., Pearson R.E., Long R.G. (1985). Genetic and phenotypic relationships among type traits scored linearly in Holsteins. J. Dairy Sci., 68: 2984-2988.

  • Sewalem A., Kistemaker G.J., Miglior F. (2004). Analysis of the relationship between type traits and functional survival in Canadian Holsteins usinga Weibull proportional hazards model. J. Dairy Sci., 87: 3938-3946.

  • Shadparvar A.A., Yazdanshenas M.S. (2005). Genetic parameters of milk yield and milk fat percentage test day records of Iranian Holstein cows. J. Anim Sci., 9: 1231-1236.

  • Sheikhloo M., Shodja J., Pirany N., Alijani S., Sayadnejad M.B. (2009). Genetic evaluation and calculating daughter yield deviation of bulls in Iranian Holstein cattle for milk and fat yields. Asian-Aust. J. Anim. Sci., 22: 611-617.

  • Short T.H., Lawlor T.J., Lee K.L. (1991). Genetic parameters for three experimental linear type traits. J. Dairy Sci., 74: 2020-2025.

  • Strabel T., Jamrozik J. (2006). Genetic analysis of production traits of Polish black and white cattle using large-scale random regression test-day models. J. Dairy Sci., 89: 3152-3163.

  • Tapki I., Ziya Guzey Y. (2013). Genetic and phenotypic correlations between linear type traits and milk production yields of Turkish Holstein dairy cows. Greener J. Agri. Sci., 3: 755-761.

  • Veerkamp R.F., Brotherstone S. (1997). Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein dairy cattle. Anim. Sci., 64: 385-392.

  • Wiggans G.R., Gengler N., Wright J.R. (2004). Type trait (co)variance components for five dairy breeds. J. Dairy Sci., 87: 2324-2330.

  • Zavadilova L., Jamrozik J., Schaeffer L.R. (2005). Genetic parameters for test-day model with random regressions for production traits of Czech Holstein cattle. Czech J. Anim. Sci., 50: 142-154.

  • Zink V., Stipkova M., Lassen J. (2011). Genetic parameters for female fertility, locomotion, body condition score, and linear type traits in Czech Holstein cattle. J. Dairy Sci., 94: 5176-5182.

  • Zink V., Zavadilova L., Lassen J., Stipkova M., Lassen J., Vacek M., Stolc L. (2014). Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows. Czech J. Anim. Sci., 59: 539-547.

OPEN ACCESS

Journal + Issues

Search