Genetic Basis of Mastitis Resistance in Dairy Cattle – A Review / Podstawy Genetyczne Odporności Krów Mlecznych Na Zapalenie Wymienia – Artykuł Przeglądowy

Open access


Mastitis is one of the most important mammary gland diseases impacting lactating animals. Resistance to this disease could be improved by breeding. There are several selection methods for mastitis resistance. To improve the natural genetic resistance of cows in succeeding generations, current breeding programmes use somatic cell count and clinical mastitis cases as resistance traits. However, these methods of selection have met with limited success. This is partly due to the complex nature of the disease. The limited progress in improving udder health by conventional selection procedures requires applying information on molecular markers of mastitis susceptibility in marker-assisted selection schemes. Mastitis is under polygenic control, so there are many genes that control this trait in many loci. This review briefly describes genome-wide association studies which have been carried out to identify quantitative trait loci associated with mastitis resistance in dairy cattle worldwide. It also characterizes the candidate gene approach focus on identifying genes that are strong candidates for the mastitis resistance trait. In the conclusion of the paper we focus our attention on future research which should be conducted in the field of the resistance to mastitis.


Zapalenie wymienia (mastitis) jest jedną z najważniejszych chorób bydła mlecznego. Poprawa odporności na tę chorobę jest możliwa dzięki wykorzystaniu metod hodowlanych. Aby poprawić odporność krów mlecznych na mastitis, dopuszczalne jest wykorzystanie kilku metod selekcyjnych, które zostały omówione pokrótce w niniejszej pracy. Programy hodowlane, obecnie stosowane na świecie, wykorzystują jako kryterium selekcyjne zwierząt odpornych na mastitis, liczbę komórek somatycznych w mleku krów lub częstość występowania przypadków klinicznych. Programy te jednak tylko częściowo przyczyniły się do poprawy odporności krów na zapalenie wymienia. Jednym z powodów małej ich efektywności jest złożona etiologia tej choroby. Aby zwiększyć efektywność programów hodowlanych w odniesieniu do odporności na mastitis, w ostatnich latach podjęto badania nad markerami genetycznymi tej choroby i ich wykorzystaniem w selekcji wspomaganej markerami. Na zapalenie wymienia wpływa wiele genów. W niniejszej pracy dokonano przeglądu badań nad poszukiwaniem markerów związanych z odpornością na mastitis i genów do niej kandydujących. W podsumowaniu wskazano kierunki dalszych badań.

  • Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P. , Da Y., Van Ra - den P.M., Ron M., Weller J.I., Lewin H.A. (2004). Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci., 87: 468-475.

  • Baes C., Mayer M., Tetens J., Liu Z., Reinhardt F., Thaller G., Reinsch N. (2010). Refined mapping ofa QTLfor somatic cell score on BTA27 in the German Holstein using combined linkage and linkage disequilibrium analysis. Can. J. Anim. Sci., 90: 169-178.

  • Bannerman D.D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87: 10-25.

  • Beecher C., Daly M., Childs S., Berry D.P., Magee D.A., Mc Carthy T.V., Giblin L. (2010). Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle. BMC Genet., 11, doi:10.1186/1471-2156-11-99

  • Cole J.B., Van Raden P.M., O ’ Connell J.R., Van Tassell C.P., Sonstegard T.S., Schnabel R.D., Taylor J.F., Wiggans G.R. (2009). Distribution and location of genetic effects for dairy traits. J. Dairy Sci., 92: 2931-2946.

  • Fleischer P., Metzner M., Beyerbach M., Hoedemaker M., Klee W. (2001). The relationship between milk yield and the incidence of some diseases in dairy cows. J. Dairy Sci., 84: 2025-2035.

  • Galal Abdel Hameed K., Sender G., Korwin - Kossakowska A. (2008). An association of the Bo LAalleles DRB3.2*16 and DRB3.2*23 with occurrence of mastitis caused by different bacterial species in two herds of dairy cows. Anim. Sci. Pap. Rep., 26: 37-48.

  • Goertz I., Baes C., Weimann C., Reinsch N., Erhardt G. (2009). Association between single nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle. J. Dairy Sci., 92: 4018-4022.

  • Hayes B.J., Pryce J., Chamberlain A.J., Bowman P.J., Goddard M.E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. Plos Genetics, 6 (9), doi:10.1371/journal. pgen.1001139

  • Heringstad B., Rekaya R., Gianola D., Klemetsdal G., Weigel KA. (2003). Genetic change for clinical mastitis in Norwegian cattle:athreshold model analysis. J. Dairy Sci., 86: 369-375.

  • Heringstad B., Gianola D., Chang Y.M., Odegard J., Klemetsdal G. (2006). Genetic associations between clinical mastitis and somatic cell score in early first-lactation cows. J. Dairy Sci., 89: 2236-2244.

  • Heringstad B., Klemetsdal G., Steine T. (2007). Selection responses for disease resistance in two selection experiments with Norwegian red cows. J. Dairy Sci., 90: 2419-2426.

  • Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Da Y., Wig- gans G.R., Van Raden P.M., Lewin H.A. (1999). Agenome scan for QTLinfluencing milk production and health traits in dairy cattle. Physiol. Genomics, 1: 165-175.

  • Holmberg M., Andersson- Eklund L. (2004). Quantitative trait loci affecting health traits in Swedish dairy cattle. J. Dairy Sci., 87: 2653-2659.

  • Hu Z-L., Park C.A., Fritz E.R., Reecy J.M. (2010). QTLdb:acomprehensive database tool building bridges between genotypes and phenotypes. Proc. 9th World Congress on Genetics Applied to Livestock Production, 1-6.08.2010, Leipzig, Germany.

  • Ingham A., Menzies M. (2006). Identification and expression of Toll-like receptors 1-10 in selected bovine and ovine tissues. Vet. Immunol. Immunop., 109: 23-30.

  • Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. (2004). Quantitative trait loci mapping in dairy cattle: review and metaanalysis. Genet. Sel. Evol., 36: 163-190.

  • Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. (2005). Combined QTLmap of dairy cattle traits. University of Sydney.

  • Klungland H., Sabry A., Heringstad B., Olsen H.G., Gomez- Raya L., Vage D.I., Olsaker I., Odegard J., Klemetsdal G., Schulman N., Vilkki J., Ruane J., Aasland M., Ronninge K., Lien S. (2001). Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm. Genome, 12: 837-842.

  • Kuhn C., Bennewitz J., Reinsch N., Xu N., Thomsen H., Looft C., Brock- mann G.A., Schwerin M., Weimann C., Hiendleder S., Erhardt G., Medjugo- rac I., Forster M., Brenig B., Reinhardt F., Reents R., Russ I., Averdunk G., Blumel J., Kalm E. (2003). Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J. Dairy Sci., 86: 360-368.

  • Lahouassa H., Rainard P., Caraty A., Riollet C. (2008). Identification and characterization ofanew interleukin-8 receptor in bovine species. Mol. Immunol., 45: 1153-1164.

  • Lewandowska- Sabat A.M., Gunther J., Seyfert H.M., Olsaker I. (2012). Combining quantitative trait loci and heterogeneous microarray data analyses reveals putative candidate pathways affecting mastitis in cattle. Anim. Genet., 43: 793-799.

  • Leyva- Baca I., Schenkel F., Martin J., Karrow N.A. (2008). Polymorphisms in the 5′ upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada. J. Dairy Sci., 91: 407-417.

  • Liu Y.X., Xu C.H., Gao T.Y., Sun Y. (2012). Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet. Mol. Res., 11: 651-660.

  • Lund M.S., Sahana G., Andersson- Eklund L., Hastings N., Fernandez A., Schulman N., Thomsen B., Viitala S., Williams J.L., Sabry A., Viinalass H., Vilkki J. (2007). Joint analysis of quantitative trait loci for clinical mastitis and somatic cell score on five chromosomes in three Nordic dairy cattle breeds. J. Dairy Sci., 90: 5282-5290.

  • Lund M.S., Guldbrandtsen B., Buitenhuis A.J., Thomsen B., Bendixen C. (2008). Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J. Dairy Sci., 91: 4028-4036.

  • Mai M.D., Rychtarova J., Zink V., Lassen J., Guldbrandtsen B. (2010). Quantitative trait loci for milk production and functional traits in two Danish cattle breeds J. Anim. Breed. Genet., 127: 469-473.

  • Meredith B.K., Kearney F.J., Finlay E.K., Bradley D.G., Fahey A.G., Berry D.P., Lynn D.J. (2012). Genome-wide associations for milk production and somatic cell score in Holstein- Friesian cattle in Ireland. BMC Genetics, 13, p. 21.

  • Minozzi G., Nicolazzi E.L., Strozzi F., Stella A., Negrini R., Ajmone - Marsan P., Williams J.L. (2011). Genome wide scan for somatic cell counts in Holstein bulls. BMC Proceedings, 5 (Suppl 4): S17.

  • Mitchell G.B., Albright B.N., Casewell J.L. (2003). Effect of interleukin n-8 and granulocyte colony stimulating factor on priming and activation of bovine neutrophils. Infect. Immun., 71: 1643-1649.

  • Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003). Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J. Dairy Sci., 86: 2684-2695.

  • Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832-851.

  • Oprządek J., Urtnowski P., Sender G., Pawlik A., Łukaszewicz M. (2012). Frequency of Bo LA-DRB3 alleles in Polish Holstein-Friesian cattle. Anim. Sci. Pap. Rep., 30: 91-101.

  • Opsal M.A., Hayes B., Berget I., Lien S., Vage D.I. (2006). Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene, 384: 45-50.

  • Pant S.D., Schenkel F.S., Leyva- Baca I., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8, doi:10.1186/1471-2164-8-421

  • Pawlik A., Sender G., Korwin - Kossakowska A. (2009). Bovine lactoferrin gene polymorphism and expression in relation to mastitis resistance -areview. Anim. Sci. Pap. Rep., 27: 263-271.

  • Pighetti G.M., Elliott A.A. (2011). Gene polymorphisms: The key for marker assisted selection and unraveling core regulatory pathways for mastitis resistance. J. Mammary Gland Biol. Neoplasia, 16: 421-432.

  • Quirion M.R., Gregory G.D., Umetsu S.E., Winandy S., Brown M.A (2009). Cutting Edge: Ikaros isaregulator of Th2 cell differentiation. J. Immunol., 182: 741-745.

  • Ron M., Feldmesser E., Golik M., Tager- Cohen I., Kliger D., Reiss V., Domo - chovsky R., Alus O., Seroussi E., Ezra E., Weller J.I. (2004). Acomplete genome scan of the Israeli Holstein population for quantitative trait loci byadaughter design. J. Dairy Sci., 87: 476-490.

  • Rupp R., Boichard D. (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res., 34: 671-688.

  • Sahana G., Lund M.S., Andersson- Eklund L., Hastings N., Fernandez A., Iso- Touru T., Thomsen B., Viitala S., Sorensen P., Williams J.L., Vilkki J. (2008). Fine-mapping QTLfor mastitis resistance on BTA9 in three Nordic red cattle breeds. Anim. Genet., 39: 354-362.

  • Schrooten C., Bink M.C.A.M., Bovenhuis H. (2004). Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J. Dairy Sci., 87: 3550-3560.

  • Schulman N.F., Viitala S.M.,de Koning D.J., Virta J., Maki - Tanila A.,Vilkki J.H. (2004). Quantitative trait loci for health traits in Finnish Ayrshire cattle. J. Dairy Sci., 87: 443-449.

  • Schulman N.F., Sahana G., Iso- Touru T., Lund M.S., Andersson- Eklund L., Vii- tala S.M., Vaerv S., Viinalass H., Vilkki J.H. (2009). Fine mapping of quantitative trait loci for mastitis resistance on bovine chromosome 11. Anim. Genet., 40: 509-515.

  • Sender G., Galal Abdel Hameid K., Korwin - Kossakowska A., Sobczyńska M. (2008). Association of the Bo LA-DRB3 alleles with estimated breeding value for somatic cell count in Polish dairy cattle. Arch. Tierzucht., 51: 111-119.

  • Sender G., Pawlik A., Korwin - Kossakowska A., Galal Abdel Hameid K., Sobczyńska M., Oprzadek J., Prusak B. (2010). Association of the bovine lactoferrin polymorphism with occurrence of mastitis. Milchwissenschaft, 65 (3): 242-245.

  • Sharma B.S., Leyva I., Schenkel F., Karrow N.A. (2006). Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls. J. Dairy Sci., 89: 3626-3635.

  • Sodeland M., Kent M.P., Olsen H.G., Opsal M.A., Svendsen M., Sehested E., Hayes B.J., Lien S. (2011). Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Anim. Genet., 42: 457-465.

  • Sorensen L.P., Guldbrandtsen B., Thomasen J.R., Lund M.S. (2008). Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in Danish Holstein cattle. J. Dairy Sci., 91: 2493-2500.

  • Starkenburg R.J., Hansen L.B., Kehrli M.E., Chester- Jones H. (1997). Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. J. Dairy Sci., 80: 3411-3419.

  • Tal- Stein R., Fontanesi L., Dolezal M., Scotti E., Bagnato A., Russo V., Canave - si F., Friedmann A., Soller M., Lipkin E. (2010). Agenome scan for quantitative trait loci affecting milk somatic cell score in Israeli and Italian Holstein cows by means of selective DNA pooling with single- and multiple-marker mapping. J. Dairy Sci., 93: 4913-4927.

  • Uthaisangsook S., Day N.K., Bahna S.L., Good R.A., Haragucki S. (2002). Innate immunity and its role against infections. Ann. Allerg. Asthma Im., 88: 253-264.

  • Wang X., Xu S., Xue G., Ren H., Chen J. (2007). Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle J. Genet. Genomics, 34: 406-412.

  • Wang C., Liu M., Li Q., Ju Z., Huang J., Li J. (2011). Three novel single nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet. Immunol. Immunop., 139: 229-236.

  • Wang X., Ju Z., Huang J., Hou M., Zhou L., Qi C., Zhang Y., Gao Q., Pan Q., Li G., Zhong J., Wang C. (2012). The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-Clevels and complement activity. Vet. Immunol. Immunop., 148: 311-319.

  • Waters S.M., Mc Cabe M.S., Howard D.J., Giblin L., Magee D.A., Mac Hugh D. E., Berry D.P. (2010). Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim Genet., 42: 39-49.

  • Wiggans G.R., Van Raden P.M., Cooper T.A. (2011). The genomic evaluation system in the United States: past, present, future. J. Dairy Sci., 94: 3202-3211.

  • Wijga S., Bastiaansen J.W.M., Wall E., Strandberg E.,de Haas Y., Giblin L., Bovenhuis H. (2012). Genomic associations with somatic cell score in first-lactation Holstein cows. J. Dairy Sci., 95: 899-908.

  • Yang Y., Li Q., Ju Z., Huang J., Zhou L., Li R., Li J., Shib F., Zhonga J., Wang C. (2012). Three novel single-nucleotide polymorphisms of complement component 4 gene (C4A) in Chinese Holstein cattle and their associations with milk performance traits and CH50. Vet. Immunol. Immunop., 145: 223-232.

  • Youngerman S.M., Saxton A.M., Oliver S.P., Pighetti G.M. (2004). Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J. Dairy Sci., 87: 2442-2448.

  • Zhang C.L., Wang Y., Fang H.C.X., Gu C. (2012). The chemokine receptor 1 gene polymorphism and its association with Somatic Cell Score and milk production traits in dairy cattle. Anim. Sci. Pap. Rep., 30 (1): 25-33.

  • Zwald N.R., Weigel K.A., Chang Y.M., Welper R.D., Clay J.S. (2006). Genetic analysis of clinical mastitis data from on-farm management software using threshold models. J. Dairy Sci., 89 (1): 330-336.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 20
PDF Downloads 3 3 3