Bacteriocins in poultry nutrition – a review / Bakteriocyny w żywieniu drobiu – artykuł przeglądowy

Open access


In recent years, a number of studies have shown a close relationship between broiler performance, health and the gastrointestinal microbiota. However, taking the complexity and biodiversity of the micro-ecosystem into consideration, a manipulation of the microbiota in a way that is profitable both for the host bird and for the farmer seems a difficult goal to achieve. Bacteriocins are extracellular proteinaceous compounds, synthesized by many bacterial species. Due to their different bacteriostatic effects, they have been used in human nutrition for decades. However, limited information is available regarding their effects in poultry, even though that similar mode of action as in other animals is possible. Therefore, the aim of the present review is to discuss present bacteriocin classification, mode of action and their potential role in poultry nutrition.


W ostatnich latach ukazało się wiele prac ilustrujących ścisły związek między wynikami odchowu kurcząt rzeźnych a rozwojem endogennej mikroflory przewodu pokarmowego. Z uwagi na bioróżnorodność tego skomplikowanego mikroekosystemu, osiągnięcie potencjalnych korzyści dla ptaka-gospodarza poprzez manipulację jego flory bakteryjnej nie jest łatwym zadaniem. Bakteriocyny są substancjami białkowymi wytwarzanymi przez wiele mikroorganizmów. Ich bakteriobójcze i bakteriostatyczne właściwości są wykorzystywane od wielu lat w żywieniu ludzi. Jednak w dostępnej literaturze naukowej brakuje informacji na temat zastosowania tych związków w dietach dla kurcząt rzeźnych. Dlatego też w niniejszym artykule przeglądowym przedstawiono aktualną klasyfikację bakteriocyn, ich działanie i wykorzystanie w żywieniu drobiu.

  • Adebayo C.O., Aderiye B.I. (2011). Suspected mode of antimycotic action of brevicin SG1 against Candida albicans and Penicillium citrinum. Food Control, 22: 1814-1820.

  • Alloui M.N., Szczurek W., Świątkiewicz S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition:areview. Ann. Anim. Sci., 13: 17-32.

  • Audisio M.C., Oliver G., Apella M.C. (1999). Antagonistic effect of Enterococcus faecium J96 against human and poultry pathogenic Salmonella spp. J. Food Prot., 62: 751-755.

  • Barnby - Smith F.M. (1992). Bacteriocins: applications in food preservation. Trends Food Sci. Technol., 3: 133-137.

  • Belguesmia Y., Madi A., Sperandio D., Merieau A., Feuilloley M., Prevost H., Drider D., Connil N. (2011). Growing insights into the safety of bacteriocins: the case of enterocin S37. Res. Microbiol., 162: 159-163.

  • Bordignon S.E., Miyaoka M.F., Spier M.R., Rubel R., Soccol V.T., Soccol C.R. (2011). Production biomolecule with inhibitory activity against Gram-negative bacteria isolated from faeces of broilers and swine. Braz. Arch. Biol. Technol., 54: 723-731.

  • Choct M. (2009). Managing gut health through nutrition. Br. Poultry Sci., 50: 9-15.

  • Cleveland J., Montville T.J., Nes I.F., Chikindas M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 71: 1-20.

  • Cole K., Farnell M., Donoghue A., Stern N., Svetoch E., Eruslanov B., Volo -dina L., Kovalev Y., Perelygin V., Mitsevich E. (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poultry Sci., 85, p. 1570.

  • Cotter P.D., Hill C., Ross R.P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3: 777-788.

  • Dahiya J., Wilkie D., Van Kessel A., Drew M. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol., 129: 60-88.

  • De Vuyst L., Leroy F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol., 13: 194-199.

  • Deegan L.H., Cotter P.D., Hill C., Ross P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J., 16: 1058-1071.

  • Diep D.B., Skaugen M., Salehian Z., Holo H., Nes I.F. (2007). Common mechanisms of target cell recognition and immunity for class IIbacteriocins. Proc. Natl. Acad. Sci. USA, 104: 2384-2389.

  • Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev., 24: 85-106.

  • Galvez A., Abriouel H., Lopez R.L., Ben Omar N. (2007 a). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol., 120: 51-70.

  • Galvez A., Abriouel H., Lopez R.L, Omar N.B. (2007 b). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol., 120: 51-70.

  • Galvez A., Lopez R.L, Abriouel H., Valdivia E., Ben Omar N. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol., 28: 125-152.

  • Gholamiandehkordi A., Timbermont L., Lanckriet A., Broeck W.V.D., Peder-sen K., Dewulf J., Pasmans F., Haesebrouck F., Ducatelle R., Van Immerseel F. (2007). Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Pathol., 36: 375-382.

  • Grilli E., Messina M.R., Catelli E., Morlacchini M., Piva A. (2009). Pediocin Aimproves growth performance of broilers challenged with Clostridium perfringens. Poultry Sci., 88: 2152-2158.

  • Hechard Y., Sahl H.D. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84: 545-557.

  • Jack R., Tagg J., Ray B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59: 171-200.

  • Joerger R. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci., 82, p. 640.

  • Johansen C.H., Bjerrum L., Pedersen K. (2007). Impact of salinomycin on the intestinal microflora of broiler chickens. Acta Vet. Scand., 49, p. 30.

  • Józefiak D., Rutkowski A., Kaczmarek S., Jensen B.B., Engberg R.M., Hoj-berg O. (2010 a). Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br. Poultry Sci., 51: 546-557.

  • Józefiak D., Rutkowski A., Martin S.A. (2004). Carbohydrate fermentation in the avian ceca:areview. Anim. Feed Sci. Technol., 113, pp. 1-15.

  • Józefiak D., Sip A., Kaczmarek S., Rutkowski A. (2010 b). The effects of Carnobacteriumdivergens AS7 bacteriocin on gastrointestinal microflora in vitro and on nutrient retention in broiler chickens. J. Anim. Feed Sci., 19: 460-467.

  • Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jen-sen B.B., Engberg R.M. (2011 a). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Br. Poultry Sci., 52: 492-499.

  • Józefiak D., Sip A., Rawski M., Steiner T., Rutkowski A. (2011 b). The dose response effects of liquid and lyophilized Carnobacterium divergens AS7 bacteriocin on the nutrient retention and performance of broiler chickens. J. Anim. Feed Sci., 20: 401-411.

  • Józefiak D., Sip A., Rutkowski A., Rawski M., Kaczmarek S., Wolun- Chole- wa M., Engberg R.M., Hojberg O. (2012). Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Sci., 91: 1899-1907.

  • Kaldhusdal M., Evensen O., Landsverk T. (1995). Clostridium perfringens necrotizing enteritis of the fowl:alight microscopic, immunohistochemical and ultrastructural study of spontaneous disease. Avian Pathol., 24: 421-433.

  • Kaldhusdal M., Hofshagen M. (1992). Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis. Poultry Sci., 71: 1145-1153.

  • Klaenhammer T.R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12: 39-85.

  • Laukova A., Guba P., Nemcova R., Vasilkova Z. (2003). Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Vet. Res. Commun., 27: 275-280.

  • Le Blay G., Lacroix C., Zihler A., Fliss I. (2007). In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett. Appl. Microbiol., 45: 252-257.

  • Leisner J.R.J., Laursen B.G, Pr Èvost H., Drider D., Dalgaard P. (2007). Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol. Rev., 31: 592-613.

  • Line J.E., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mit-sevich I.P., Levchuk V.P., Svetoch O.E., Seal B.S., Siragusa G.R., Stern N.J. (2008). Isolation and purification of enterocin E-760 with broad antimicrobial activity against grampositive and gram-negative bacteria. Antimicrob. Agents Chemother., 52: 1094-1100.

  • Lu J., Hofacre C., Smith F., Lee M.D. (2008). Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal, 2: 669-676.

  • Marugg J.D. (1991). Bacteriocins, their role in developing natural products. Food Biotechnol., 5: 305-312.

  • Montville T.J., Winkowski K., Ludescher R.D. (1995). Models and mechanisms for bacteriocin action and application. Int. Dairy J., 5: 797-814.

  • Musikasang H., Sohsomboon N., Tani A., Maneerat S. (2012). Bacteriocin-producing lactic acid bacteria asaprobiotic potential from Thai indigenous chickens. Czech J. Anim. Sci., 57: 137-149.

  • Nava G.M., Bielke L.R., Callaway T.R., Castaneda M.P. (2005). Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Anim. Health Res. Rev., 6: 105-118.

  • Nazef L., Belguesmia Y., Tani A., Prevost H., Drider D. (2008). Identification of lactic acid bacteria from poultry feces: evidence on anti-Campylobacter and anti-Listeria activities. Poultry Sci., 87, p. 329.

  • Nes I.F., Diep D.B, Havarstein L.S., Brurberg M.B., Eijsink V., Holo H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Molec. Microbiol., 70: 113-128.

  • O ' Sullivan L., Ross R.P., Hill C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84: 593-604.

  • Ogunbanwo S.T., Sanni A.I., Onilude A.A. (2004). Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World J. Microbiol. Biotechnol., 20: 51-56.

  • Portrait V., Cottenceau G., Pons A.M. (2000). A Fusobacterium mortiferum strain producesabacteriocin-like substance(s) inhibiting Salmonella enteritidis. Lett. Appl. Microbiol., 31: 115-117.

  • Rehman H., Vahjen W., Awad W., Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archiv. Anim.319-335.

  • Richard C., Cañon R., Naghmouchi K., Bertrand D., Prēvost H., Drider D. (2006). Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiol., 23: 175-183.

  • Rihakova J., Petit V.W., Demnerova K., Prevost H., Rebuffat S., Drider D. (2009). Insights into Structure-Activity Relationships in the C-Terminal Region of Divercin V41,a Class IIa Bacteriocin with High-Level Antilisterial Activity. Applied and Environmental Microbiology, 7: 1811-1819.

  • Robyn J., Rasschaert G., Messens W., Pasmans F., Heyndrickx M. (2012). Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Benef. Mirbobes, 3: 299-308.

  • Schillinger U., Geisen R., Holzapfel W.H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol., 7: 158-164.

  • Shin M.S., Han S.K., Ji A.R., Kim K.S., Lee W.K. (2008). Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol., 105: 2203-2212.

  • Sip A., Grajek W., Boyaval P. (1998). Enhancement of bacteriocin production by Carnobacteriumdivergens AS7 in the presence ofabacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol., 42: 63-69.

  • Stern N.J., Svetoch E.A., Eruslanov B.V., Kovalev Y.N., Volodina L.I., Perely -gin V.V., Mitsevich E.V., Mitsevich I.P., Levchuk V.P.. (2005). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J. Food Prot., 68: 1450-1453.

  • Stern N.J., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mit-sevich I.P., Pokhilenko V.D., Levchuk V.P., Svetoch O.E., Seal B.S. (2006). Isolation ofaLactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother., 50: 3111-3116.

  • Tahiri I., Desbiens M., Benech R., Kheadr E., Lacroix C., Thibault S., Ouel -let D., Fliss I. (2004). Purification, characterization and amino acid sequencing of divergicin M35:anovel class IIa bacteriocin produced by Carnobacterium divergens M35. Int. J. Food Microbiol., 97: 123-136.

  • Totton S.C., Farrar A.M., Wilkins W., Bucher O., Waddell L.A., Wilhelm B.J., Mc - Ewen S.A., Rajic A. (2012). The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: Asystematic review, meta-analysis, and meta-regression approach. Prev. Vet. Med., 106: 197-213.

  • Van Immerseel F., Rood J., Moore R., Titball R. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol., pp. 32-36.

  • Williams R.B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol., 34: 159-180.

  • Wilson J., Tice G., Brash M.L., St Hilaire S. (2005). Manifestations of Clostridium perfringens and related bacterial enteritides in broiler chickens. Worlds Poultry Sci. J., 61: 435-449.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 2 2 2