Glutamine as a Feed Supplement for Piglets: a Review / Glutamina jako dodatek do paszy dla prosiąt: przegląd

Open access

Abstract

Weaning is a crucial moment in a piglet’s life. It is characterized by a generally low nutrient intake and adverse changes in the small intestinal mucosa. Proper feeding is therefore necessary to ensure normal development of the gastrointestinal tract. One substance that could provide intestinal epithelial cells with necessary energy is the amino acid glutamine. It improves epithelium structure and accelerates the growth of intestinal villi in which nutrients are absorbed, thus improving feed utilization and growth performance in piglets. The effect of glutamine on intestinal microflora also improves animal health. In addition to liver and kidneys, small intestine is the main site of glutamine metabolism, which leads to the synthesis of purine and pyrimidine nucleotides and of the important antioxidant glutathione. Glutamine is also a precursor for the synthesis of proline and arginine, the components of body proteins. Glutamine downregulates the expression of genes responsible for oxidative stress and immune activation, and increases the expression of genes that are necessary for cell growth and removal of oxidants. Due to these properties, glutamine is considered an essential amino acid in diets for weaned piglets.

Anadón A. (2006). The EU ban of antibiotics as feed additives: alternatives and consumer safety. J. Vet. Pharm. Therap., 29: 41-44.

Bailey M., Haverson K., Inman C., Harris C., Jones P., Corfield G., Miller B., Stokes C. (2005). The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc. Nutr. Soc., 64: 451-457.

Ban K., Kozar R.A. (2010). Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 299: G1344-G1353.

Boyd R.D., Kensinger R.S., Harrell R.J., Bauman D.E. (1995). Nutrient uptake and endocrine regulation of milk synthesis by mammary tissue of lactating sows. J. Anim. Sci., 73, (Suppl. 2): 36-56.

Brasse - Lagnel C.G., Lavoinne A.M., Husson A.S. (2010). Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 92: 729-735.

Burrin D., Stoll B., Jiang R., Chang X., Hartmann B., Holst J.J., Greely G.H., Reeds P.J. (2000). Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am. J. Clin. Nutr., 71: 1603-1610.

Burrin D., Stoll B. (2003). Enhancing intestinal function to improve growth and efficiency. In: Ball R.O. (Ed.) Proc. 9th Intern. Symp. on Digestive Physiology in Pigs. Banff, AB, Canada, pp. 121-138.

Burrin D.G., Stoll B. (2009). Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr., 90 (Suppl.): 1S-7S.

Chang W.K., Yang K.D., Chuang H., Jan J.T., Shaio M.F. (2002). Glutamine protects activated human Tcells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin. Immun., 104: 151-160.

Curi R., Lagranha C.J., Doi S.Q., Sellitti D.F., Procopio J., Pithon - Curi T.C., Cor- less M., Newsholme P. (2005). Molecular mechanisms of glutamine action. J. Cell Physiol., 204: 392-401.

Dillon E.L., Knabe D.A., Wu G. (1999). Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am. J. Physiol., 276: G1079-G1086.

Domeneghini C., Di Giancamillo A., Savoini G., Paratte R., Bontempo V., Dell ’ Orto V. (2004). Structural patterns of swine ileal mucosa following L-glutamine and nucleotide administration during the weaning period. An histochemical and histometrical study. Histol. Histopathol., 19: 49-58.

Domeneghini C., Di Giancamillo A., Bosi G., Arrighi S. (2006). Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Vet. Res Com., 30: 331-342.

Eagle H. (1955). Nutritional needs of mammalian cells in tissue culture. Science (Washington DC), 122: 501-504.

Easter R.A., Katz R., Baker D.H. (1974). Arginine: a dispensable amino acid for postpubertal growth and pregnancy of swine. J. Anim. Sci., 39: 1123-1128.

Ehrensvard G., Fischer A., Strjenholm E. (1949). Protein metabolism of tissue cells in vitro. The chemical nature of some obligate factors of tissue cell nutrition. Acta Phys. Scand., 18: 218-230.

Ewtushick A.L., Bertolo R.F.P., Ball R.O. (2000). Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can. J. Anim. Sci., 80: 653-662.

Hampson D.J. (1986). Alteration in piglet small intestinal structure at weaning. Res. Vet. Sci., 40: 32-40.

Haynes T.E., Li P., Li X., Shimotori K., Sato H., Flynn N.E., Wang J., Knabe D.A., Wu G. (2009). L-glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids, 37: 131-142.

Hsu C.B., Huang H.J., Wang C.H., Yen H.T., Yu B. (2010). The effect of glutamine supplement on small intestinal morphology and xylose absorptive ability of weaned piglets. African J. Biotechnol., 9: 7003-7008.

Johnson I.R., Ball R.O., Baracos V.E., Madsen K.L., Goruk S., Field C.J. (2003). Influence of glutamine on immune development in newly weaned piglets. Adv. Pork Prod., 14, Abstr. 12.

Johnson I.R., Ball R.O., Baracos V.E., Field C.J. (2006). Glutamine supplementation influences immune development in the newly weaned piglet. Develop. Compar. Immunol., 30: 1191-1202.

Jones M.E. (1985). Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, apossible modulator of arginine requirements. J. Nutr., 115: 509-515.

Kim S.W., Mc Oherson R.L., Wu G. (2004). Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr., 134: 625-630.

Kitt S.J., Miller P.S., Fischer R.L. (2004). Supplementation on sow and litter performance, subsequent weanling pig performance and intestinal development after an immune challenge. Nebraska Swine Report, pp. 14-17.

Labow B.I., Souba W.W. (2000). Glutamine. World J. Surg., 24: 1503-1513.

Lallés J-P., Boudry G., Favier C., Le Floc ’h N., Luron I., Montagne L., Oswald I.P., Pie S., Piel C., Séve B. (2004). Gut function and dysfunction in young pigs : physiology. Anim. Res., 53: 301-316.

Le Dividich J., Séve B. (2000). Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Dom. Anim. Endocrinol., 19: 63-74.

Matés J.M., Pérez- Gomez C., Nunezde Castro I., Asenjo M., Marquez J. (2002). Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/ death. Int. J. Biochem. Cell Biol., 34: 439-458.

Mertz E.T., Beeson W.M., Jackson H.D. (1952). Classification of essential amino acids for weanling pigs. Arch. Biochem Biophys., 38: 121-128.

Nabuurs M.J., Hoogendoorn A., van Zijderveld -van Bemmel A. (1996). Effect of supplementary feeding during the suckling period on net absorption from the small intestine of weaned pigs. Res. Vet. Sci., 61: 72-77 Newsholme P. (2001). Why is L-glutamine metabolism important to cells of immune system in health, postinjury, surgery or infection? J. Nutr., 131: 2515-2522.

Newsholme P., Lima M.M.R., Procopio J., Pithon - Curi T.C., Doi S.Q., Bazotte R.B., Curi R. (2003). Glutamine and glutamate as vital metabolites. Brazil. J. Med. Biol. Res., 36: 153-163.

O’Quinn P.R., Knabe D.A., Wu G. (2002). Arginine catabolism in lactating porcine mammary tissue. J. Anim. Sci., 80: 467-474.

Pluske J.R., Hampson D.J., William I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: areview. Livest. Prod. Sci., 51: 215-236.

Reeds P.J., Burrin D.G., Stoll B., Jahoor F., Wykes L., Henry J., Frazer M.E. (1997). Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am. J. Physiol., 273: E408-E415.

Ropeleski M.J., Riehm J., Baer K.A., Musch M.W., Chang E.B. (2005). Antiapoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology, 129: 170-184.

Séve B., Reeds P.J., Fuller M.F., Cadenhead A., Hay S.M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early-weaning. Possible connection to the energy metabolism. Reprod. Nutr. Dev., 26: 849-861.

Thacker P.A. (1999). Nutritional requirements of early weaned pigs: a review. Pig News Info, 20:13 N-24 N Trottier N.L., Shipley C.F., Easter R.A. (1997). Plasma amino acid uptake by the mammary gland of the lactating sow. J.Anim. Sci., 75: 1266-1278.

Wang J., Chen L., Li P., Li X., Zhou H., Wang F., Li D., Yin Y., Wu G. (2008). Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr., 138: 1025-1032.

Windmueller H.G., Spaeth A.G. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys., 171: 662-672.

Wu G., Borbolla A.G., Knabe D.A. (1994). The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J. Nutr., 124: 2437-2444.

Wu G., Knabe D.A. (1994). Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr., 124: 415-424.

Wu G., Knabe D.A. (1995). Arginine synthesis in enterocytes of neonatal pigs. Am. J. Physiol., 269: R621-R629.

Wu G., Knabe D.A., Yan W., Flynn N.E. (1995). Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol., 268: R334-R342.

Wu G., Meier S.A., Knabe D.A. (1996). Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr., 126: 2578-2584.

Wu G., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. (2004). Glutathione metabolism and its implications for health. J. Nutr., 134: 489-492.

Wu G., Bazer F.W., Davis T.A., Jaeger L.A., Johnson G.A., Kim S.W., Knabe D.A., Meininger C.J., Spencer T.E., Yin Y-L. (2007). Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 112: 8-22.

Zhao Y.R., Wang H.Q., He J.H., Fan Z. Y. (2009). Effects of glutamine on intestinal microflora and mucous membrane of weaning piglets. J. Hunan Agric. Univ., 35: 158-161.

Zhong X., Zhang X.H., Li X.M., Zhou Y.M., Li W., Huang X.X., Zhang L.L., Wang T. (2011). Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine. J. Anim., Sci., 89: 3634-3642.

Zou X.T., Zheng G.H., Fang X.J., Jiang J.F. (2006). Effects of glutamine on growth performance of weanling piglets. Czech. J. Anim. Sci., 51: 444-448.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 159 14
PDF Downloads 68 68 12