Changes in Distortion Product Otoacoustic Emission Caused by Contralateral Broadband Noise

Open access


The main purpose of this investigation was to measure the effect of contralateral acoustic stimulation (CAS) on distortion product otoacoustic emission (DPOAE) in twenty human ears, for a ratio of primary tones f2/f1 = 1.22 and a wide frequency range of f2 (1.4-9 kHz), for two intensity levels of primary tones (L1 = 60 dB SPL; L2 = 50 dB SPL and L1 = 70 dB SPL; L2 = 60 dB SPL) and two intensity levels of CAS (50 and 60 dB SPL). It was found that in the presence of CAS, in the majority of cases the DPOAE level decreased (suppression), but it might also increase (enhancement) or remain unchanged depending on the frequency. The mean suppression level of the component of the frequency fDP = 2f1 f2 might be approximated by a linearly decreasing function of the f2 frequency of primary tones. The slope of this function was negative and increased with an increase of the contralateral stimulation level. The higher was the contralateral noise level the greater was the suppression. For the fDP level below about 15 dB SPL, suppression was observed in a substantial number of measurement cases (in about 85% of all measured cases on average). When the fDP level was higher than 15 dB SPL, only suppression (not enhancement) was observed.

1. Abdala C., Mishra S.K., Williams T.L. (2009), Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex, J. Acoust. Soc. Am., 125, 1584-1594.

2. Backus B.C., Guinan J.J. Jr. (2006), Time-course of the human medial olivocochlear reflex, J. Acoust. Soc. Am., 119, 2889-2904.

3. Berlin C.I., Hood L.J., Wen H., Szabo P., Cecola R.P., Rigby P., Jackson D.F. (1993), Contralateral suppression of non-linear click-evoked otoacoustic emissions, Hear. Res., 71, 1-11.

4. Chery-Croze S., Moulin A., Collet L. (1993), Effect of contralateral sound stimulation on the distortion product 2f1 f2 in humans: evidence of a frequency specificity, Hear. Res., 68, 53-58.

5. Collet L., Kemp D.T., Veuillet E., Duclaux R., Moulin A., Morgon A. (1990), Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects, Hear. Res., 43, 251-261.

6. Collet L., Veuillet E., Moulin A., Morlet T., Giraud A.L., Micheyl C., Chery-Croze S. (1994), Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans, Br. J. Audiol., 28, 213-218.

7. Deeter R., Abel R., Calandruccio L., Dhar S. (2009), Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions, J. Acoust. Soc. Am., 126, 2413-2424.

8. Francis N.A., Guinan J.J. Jr. (2010), Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths, Hear. Res., 267, 36-45.

9. Gelfand S.A., Piper N. (1984), Acoustic reflex thresholds: variability and distribution effects, Ear Hear, 5, 228-234.

10. Giraud A.L., Collet L., Chery-Croze S. (1997), Suppression of otoacoustic emission is unchanged after several minutes of contralateral acoustic stimulation, Hear. Res., 109, 78-82.

11. Giraud A.L., Collet L., Chery-Croze S., Magnan J., Chays A. (1995), Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans, Brain Res, 705, 15-


12. Guinan J.J. (ed) (1996), The physiology of olivocochlear efferents, (Springer-Verlag, New York).

13. Guinan J.J. Jr. (2006), Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans, Ear Hear, 27, 589-607.

14. Guinan J.J. Jr., Backus B.C., Lilaonitkul W., Aharonson V. (2003), Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs, J. Assoc. Res. Otolaryngol., 4, 521-540.

15. He N.J., Schmiedt R.A. (1993), Fine structure of the 2f1 f2 acoustic distortion product: changes with primary level, J. Acoust. Soc. Am., 94, 2659-2669.

16. Henin S., Thompson S., Abdelrazeq S., Long G.R. (2011), Changes in amplitude and phase of distortionproduct otoacoustic emission fine-structure and separated components during efferent activation, J. Acoust. Soc. Am., 129, 2068-2079.

17. Hood L.J. (ed) (2002), Suppression of otoacoustic emissions in normal individuals and in patients with auditory disorders, (Stuttgart, New York).

18. James A.L., Harrison R.V., Pienkowski M., Dajani H.R., Mount R.J. (2005), Dynamics of real time DPOAE contralateral suppression in chinchillas and humans, Int. J. Audiol., 44, 118-129.

19. James A.L., Mount R.J., Harrison R.V. (2002), Contralateral suppression of DPOAE measured in real time, Clin. Otolaryngol. Allied. Sci., 27, 106-112.

20. Knight R.D., Kemp D.T. (2001), Wave and place fixed DPOAE maps of the human ear, J. Acoust. Soc. Am., 109, 1513-1525.

21. Konrad-Martin D., Neely S.T., Keefe D.H., Dorn P.A., Cyr E., Gorga M.P. (2002), Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears, J. Acoust. Soc. Am., 111, 1800-1809.

22. Liberman M.C. (1988), Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise, J. Neurophysiol, 60, 1779-1798.

23. Lilaonitkul W., Guinan J.J. Jr. (2009), Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking, J. Neurophysiol, 101, 1394-1406.

24. Lisowska G., Smurzynski J., Morawski K., Namyslowski G., Probst R. (2002), Influence of contralateral stimulation by two-tone complexes, narrowband and broad-band noise signals on the 2f1 f2 distortion product otoacoustic emission levels in humans, Acta Otolaryngol, 122, 613-619.

25. Maison S., Micheyl C., Andeol G., Gallego S., Collet L. (2000), Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth, Hear. Res., 140, 111-125.

26. Manley G.A., Taschenberger G., Oeckinghaus H. (1999), Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl, Hear. Res., 138, 1-12.

27. Mauermann M., Uppenkamp S., van Hengel P.W., Kollmeier B. (1999), Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1, J. Acoust. Soc. Am., 106, 3473-3483.

28. Moulin A., Collet L., Duclaux R. (1993), Contralateral auditory stimulation alters acoustic distortion products in humans, Hear. Res., 65, 193-210.

29. Muller J., Janssen T., Heppelmann G., WagnerW. (2005), Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans, J. Acoust. Soc. Am., 118, 3747-3756.

30. Ozimek E., Wicher A. (2006), Otoacoustic emission (DPOAE) measured in the presence of contralateral stimulation, XXVIII International Congress of Audiology (Insbruck, Austria), p. 43.

31. Probst R., Lonsbury-Martin B.L., Martin G.K. (1991), A review of otoacoustic emissions, J. Acoust. Soc. Am., 89, 2027-2067.

32. Puel J.L., Rebillard G. (1990), Effect of contralateral sound stimulation on the distortion product 2f1 f2: evidence that the medial efferent system is involved, J. Acoust. Soc. Am., 87, 1630-1635.

33. Reuter K., Hammershoi D. (2006), Distortion product otoacoustic emission fine structure analysis of 50 normal-hearing humans, J. Acoust. Soc. Am., 120, 270-279.

34. Sun X.M. (2008), Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression, J. Acoust. Soc. Am., 123, 4310-4320.

35. Williams D.M., Brown A.M. (1995), Contralateral and ipsilateral suppression of the 2f1 f2 distortion product in human subjects, J. Acoust. Soc. Am., 97, 1130-1140.

36. Williams D.M., Brown A.M. (1997), The effect of contralateral broad-band noise on acoustic distortion products from the human ear, Hear. Res., 104, 127-146.

37. Zhang F., Boettcher F.A., Sun X.M. (2007), Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams, Int. J. Audiol., 46, 187-195.

Archives of Acoustics

The Journal of Institute of Fundamental Technological of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.816
5-year IMPACT FACTOR: 0.835

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.432
Source Normalized Impact per Paper (SNIP) 2016: 0.948

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 6
PDF Downloads 37 37 5