Numerical study of a cracked pipeline under internal pressure

Khireche Abderraouf 1  and Labed Zohra 2
  • 1 Laboratory of Mechanics, Department of Mechanical Engineering Faculty of Sciences of Technology, Brothers Mentouri University, Constantine 1, Campus Chaab Erssas, Constantine 25000, Algeria
  • 2 Laboratory of Mechanics, Department of Mechanical Engineering Faculty of Sciences of Technology, Brothers Mentouri University, Constantine 1, Campus Chaab Erssas, Constantine 25000, Algeria

Abstract

In the industrial sectors, pipelines have been used as the most economical and safe means of transporting oil and gas (Pipelines). However, the number of accidents has increased considerably as their use has increased. As a result of the operating load and the pressure used, the thickness of the tube must be increased and the mechanical characteristics improved. This approach was applied to predict the growth of crack effect in samples of two pipelines at given thicknesses and pressures. We created cracks with deferential dimensions in both API X80 steel pipelines, with an application of deferential internal pressures. For the simulations, we used the code ANSYS.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Baiy, Bai Q., ediotors. Subsea Engineering Handbook. Gulf Professional Publishing; 2010.

  • [2] S Baiy, Bai Q., ediotors. Subsea Pipelines and Risers. Elsevier Science Ltd; 2005. pp. 808.

  • [3] Goodall GR, Welding high strength modern line pipe steel. Ph.D. thesis. 2011.

  • [4] Singh, M. P., Arora, K. S., Shajan, N., Pandu, S. R., Shome, M., Kumar, R., & Shukla, D., Comparative analysis of continuous cooling transformation behaviour in CGHAZ of API X-80 and X-65 line pipe steels. Journal of Thermal Analysis and Calorimetry. 2019.

  • [5] Shome M, Mohanty ON., Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels. Metall Mater Trans A. 2006;37(7):2159–69.

  • [6] Chen XW, Qiao GY, Han XL, Wang X, Xiao FR, Liao B., Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels. Mater Des. 2014;53:888–901.

  • [7] Z. Labed, B. Necib., Analyse des contraintes élasto- plastiques dans un cylindre sous l’effet de la variation de la pression interne. Laboratoire de Mécanique Faculté des Sciences de l’Ingénieur Université Mentouri Constantine – Algérie. 2007.

  • [8] Helie, M., Matériaux métalliques : Phénomènes de corrosion, consulté le 11.06.2005.

  • [9] D. LEBAILLIF., Fissuration en fatigue des structures mécanosoudées soumises à un environnement mécanique complexe. Université BLAISE PASCAL – Clermont II Ecole Doctorale Sciences pour l’Ingénieur de Clermont – Ferrand, (Soutenue publiquement le 13 septembre 2006).

  • [10] Usiminas. Inspection certificate no. 1247149.

  • [11] Santos, T. F. A., Hermenegildo, T. F. C., Afonso, C. R. M., Marinho, R. R., Paes, M. T. P., & Ramirez, A. J., Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Engineering Fracture Mechanics, 77(15), 2937–2945. 2010.

  • [12] Peterson, R.E., Stress Concentration Factors. Wiley, New York (1974).

  • [13] Laiarinandrasana, L., Morgeneyer, T. F., Cheng, Y., Helfen, L., Le Saux, V., & Marco, Y., Microstructural observations supporting thermography measurements for short glass fibre thermoplastic composites under fatigue loading. Continuum Mechanics and Thermodynamics. 2019.

OPEN ACCESS

Journal + Issues

Search