Computation of SIFs for cracked FGMs under mechanical and thermal loadings

Yazid Ait Ferhat 1  and Abdelkeder Boulenouar 1
  • 1 Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes (22000), bp. 89, city Larbi Ben Mhidi, Algeria

Abstract

The objective of this study is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded materials (FGMs), under mechanical and thermal loading conditions. In this paper, a modified displacement extrapolation technique (DET) was proposed to calculate the stress intensity factor (SIFs) for isotropic FGMs. Using the Ansys Parametric Design Language APDL, the continuous variations of the material properties are incorporated by specified parameters at the centroid of each element. Three numerical examples are presented to evaluate the accuracy of SIFs calculated by the proposed method. Comparisons have been made between the SIFs predicted by the DET and the available reference solutions in the current literature. A good agreement is obtained between the results of the DET and the reference solutions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Anlas G, Santare M.H., Lambros J., Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract, 104 (2000) 131-143.

  • [2] Rao B.N., Rahman S., Mesh-free analysis of cracks in isotropic functionally graded materials,Eng.Fract. Mech, 70(2003) 1-27.

  • [3] Kim J.H., Paulino G.H., Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method,Eng.Fract. Mech, 69 (2002) 1557-1586.

  • [4] Kim J.H., Paulino G.H., Mixed-mode J-integral formulation and implementation using graded finite elements for fracture analysis of nonhomogeneous orthotropic materials,Mech. Mater, 35 (2003) 107-128.

  • [5] Kim J.H., Paulino G.H., The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors,Int J Solids Struct, 40(2003) 3967-4001.

  • [6] Mirahmadi H., Azimi M., Mirjavadi S.S., Calculation of stress intensity factor for functionally graded cylinders with two radial cracks using the weight function method, TheorApplFract Mec,85 (2016) 447–456.

  • [7] Gu P., Dao M., Asaro R.J., A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral,J. Appl. Mech, 66 (1) (1999) 101-108.

  • [8] Guo L.C., Wu L.Z., Zeng T., Ma L., Mode I crack problem for a functionally graded orthotropic strip, Eur J Mech A-Solid, 23 (2004) 219-234.

  • [9] Boulenouar A., Numerical study of the fracture behavior of a FGM circular disk, Journal of Mineral and Material Science (JMMS) (2020) accepted.

  • [10] Hebbar I., Boulenouar A., Ait Ferhat Y., Two-dimensional fracture analysis of FGM under mechanical loading, J. Mater. Eng. Struct, 7(2) (2020)241-252.

  • [11] Shojaee S., Daneshmand A., Crack analysis in media with orthotropic Functionally Graded Materials using extended Isogeometric analysis, Eng.Fract. Mech, 147 (2015) 203-227.

  • [12] Martinez-Paneda E., Gallego R., Numerical analysis of quasi-static fracture in functionally graded materials, Int J Mech Mater Des, 11 (2015) 405-424.

  • [13] Benamara N., Boulenouar A., Aminallah M., Strain Energy Density Prediction of Mixed-Mode Crack Propagation in Functionally Graded Materials, Period. Polytech. Mech. Eng, 61(1) (2017) 60-67.

  • [14] Benamara N., Boulenouar A., Aminallah M., Benseddiq N., On the mixed-mode crack propagation in FGMs plates: comparison of different criteria, StructEng Mech. 615 (3) (2017) 371-379.

  • [15] Chafi M., Boulenouar A., A numerical modelling of mixed mode crack initiation and growth in functionally graded materials, Mater. Res, 22(3) (2019) 1-15.

  • [16] Eskandari H., Stress Intensity Factors for Crack Located at an Arbitrary Position in Rotating FGM Disks, Jordan j. mech. ind.eng, 8(1) (2014) 27-34.

  • [17] Garg S., Pant M., Numerical simulation of adiabatic and isothermal cracks in functionally graded materials using optimized element-free Galerkin method, J. Therm. Stresses, 40(7) (2017) 1-20.

  • [18] Shafiei N., Mirjavadi S.S., Afshari B.M., Rabby S., Hamouda A.M.S., Nonlinear thermal buckling of axially functionally graded micro and nanobeams,Compos Struct, 168 (2017) 428–439.

  • [19] Azimi M., Mirjavadi S.S., Shafiei N., Hamouda A.M.S., Davari E.,Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution, Mech Adv Mat Struc, 25(6) (2017) 467–480.

  • [20] Yildirim B., An equivalent domain integral method for fracture analysis of functionally graded materials under thermal stresses,J. Therm. Stresses, 29 (2006) 371-397.

  • [21] Dag S., Mixed-mode fracture analysis of functionally graded materials under thermal stresses: a new approach using Jk-integral,J. Therm. Stresses, 30 (2007) 269-296.

  • [22] Yildirim B., Dag S., Erdogan F., Three dimensional fracture analysis of FGM coatings under thermomechanical loading,Int. J. Fract, 132 (2005) 369-395.

  • [23] Chen J., Wu L., Du S., A modified J integral for functionally graded materials,Mech. Res. Commun, 27(3) (2000) 301-306.

  • [24] KC A., Kim J.H., Interaction integrals for thermal fracture of functionally graded materials,Eng. Fract. Mech, 75 (2008) 2542-2565.

  • [25] Rangaraj S., Kokini K., A Study of Thermal Fracture in Functionally Graded Thermal Barrier Coatings Using a Cohesive Zone Model, J. Eng. Mater. Technol, 126(1) (2004)103-115.

  • [26] Jin Z.H., Paulino G.H., Transient thermal stress analysis of an edge crack in a functionally graded material,Int. J. Fract, 107(2001) 73-98.

  • [27] Dag S., Arman E., Yildirim B., Computation of thermal fracture parameters for orthotropic functionally graded materials using Jk-integral,Int J Solids Struct, 47 (2010) 3480-3488.

  • [28] Yildirim B., Erdogan F., Edge crack problems in homogeneous and functionally graded materials under thermal barrier coatings under uniform thermal loading,J. Therm. Stresses, 27(4) (2004) 311-329.

  • [29] Kosker S., Dag S., Yildirim B., Three Dimensional Modeling of Inclined Surface Cracks in FGM Coatings, Mater Sci Forum, 631-632 (2010) 109-114.

  • [30] Dag S., Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach, Eng.Fract.Mech, 73 (2006) 2802-2828.

  • [31] Azimi M., Mirjavadi S.S., Shafiei N., Hamouda, A.M.S., Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam,Appl. Phys. A, 123(2) (2017)104-123.

  • [32] Jain N., Shukla A., Chona R., Asymptotic stress fields for thermo-mechanically loaded cracks in FGMs,Fatigue FractMech, 3(7) (2006) 78-90.

  • [33] Kidane A., Vijaya B., Chalivendra V.B., Shukla A., Chona R., Mixed-mode dynamic crack propagation in graded materials under thermo-mechanical loading, Eng.Fract. Mech, 77 (2010) 2864-2880.

  • [34] Nami M.R., Eskandari H., Three-dimensional investigations of stress intensity factors in a thermo-mechanically loaded cracked FGM hollow cylinder,Int J Pres Ves Pip, 89 (2012) 222-229.

  • [35] Takabi B., Thermomechanical transient analysis of a thick-hollow FGM cylinder, Eng Sol Mech, 4 (2016) 25-32.

  • [36] Walters M.C., Paulino G.H., Dodds Jr R.H., Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading,Int J Solids Struct, 41 (2004) 1081-1118.

  • [37] Moghaddam A.S., Ghajar R., Alfano M., Finite element evaluation of stress intensity factors in curved non-planar cracks in FGMs. Mech. Res. Commun. 38 (2011) 17-23.

  • [38] Lee K.H., Chalivendra V.B., Shukla A., Dynamic crack-tip stress and displacement fields under thermomechanical loading in functionally graded materials,J. Appl. Mech, 75(5) (2008) 1-7.

  • [39] Zhang H.H., Liu S.M., Han S.Y., Fan L.F., Modeling of 2D cracked FGMs under thermo-mechanical loadings with the numerical manifold method,Int. J. Mech. Sci, 148 (2018) 103-117.

  • [40] Moghaddam A.S., Alfano M.,Thermoelastic analysis of surface cracks in FGMs hollow cylinders using the interaction energy integral method, Eng. Fract. Mech, 202 (2018) 103-115.

  • [41] Mahbadi H., Stress Intensity Factor of Radial Cracks in Isotropic Functionally Graded Solid Cylinders. Eng. Fract. Mech, 180 (2017) 115-131.

  • [42] Abotula S., Kidane A., Vijaya B., Chalivendra B., Shukla A.,Dynamic curving cracks in functionally graded materials under thermo-mechanical loading,Int J Solids Struct, 49 (2012) 1637-1655.

  • [43] ANSYS, Inc.Programmer’s Manual for Mechanical APDL. (2009) Release 12.1.

  • [44] Dag S., Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach, Eng. Fract. Mech, 73 (2006) 2802-2828.

  • [45] Boulenouar A., Bendida N., Crack growth path simulation in a cement mantle of THR using crack box technique, J Theor App Mech-Pol, 57(2) (2019) 317-329.

  • [46] Ait Ferhat Y., Boulenouar A., Benamara N., Benabou L., Generalized displacement correlation method for mechanical and thermal fracture of FGMs, Int J Comp Mater SciEng, 09 (1) (2020)2050004-2565.

  • [47] Boulenouar A., Benseddiq N., Mazari M., Benamara N., FE model for linear elastic mixed mode loading: estimation of SIFs and crack propagation, J Theor App Mech-Pol, 52 (2014) 373-383.

  • [48] Boulenouar A., Benseddiq N., Mazari M., Strain energy density prediction of crack propagation for 2D linear elastic materials, TheorApplFractMec, (67-68) (2013) 29-37.

  • [49] Boulenouar A., Benamara N., Merzoug M., Numerical modeling of crack propagation under mixed-mode loading, J. Sci. Technol, 7(4) (2017) 35-43.

  • [50] Boulenouar A., Benseddiq N., Mazari M., Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis, Eng. Technol. Appl. Sci. Res, 3 (2013) 506-510.

  • [51] Benouis A., Boulenouar A., Benseddiq N., Serier B., Numerical analysis of crack propagation in cement PMMA: application of SED approach, StructEngMech, 55(1) (2015) 93-109.

  • [52] Boulenouar A., Benouis A., Benseddiq N., Numerical modelling of crack propagation in cement PMMA: Comparison of different criteria, Mater. Res, 19(4) (2016) 846-855.

  • [53] Merzoug M., Boulenouar A., Benguediab M., Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch, Steel Compos Struct, 25 (2) (2017) 209-216.

  • [54] Kim J.H., Paulino G.H., Finite element evaluation of mixed mode stress intensity factors in functionally graded materials,Int J Numer Meth Eng, 53(8) (2002) 1903-1935.

  • [55] Garg S., Pant M., Numerical simulation of thermal fracture in functionally graded materials using element-free Galerkin method, Sādhanā, 42(3) (2017) 417-431.

OPEN ACCESS

Journal + Issues

Search