Reproducibility of machine tools’ circularity test according to ISO 230-4 with respect to testing position

Open access


In this paper circularity of three different machine tools by Virtual Machine was analyzed. To get circularity we make a ball bar test according to ISO 230-4. The test is very common in engineering for a quick diagnostic Computerized Numerical Control (CNC) technical conditions. We implemented earlier calculations of Volumetric Error in our Virtual Machine. Then we simulated testing of circularity of CNC machine tools. The place to take the test was chosen randomly from Uniform Distribution in three different kinds of machine tools. Those machines had different characteristics of kinematic errors and squareness and also different sizes of working space. We observed significant differences in the indicator (circularity) depending on the place where the test was taken. Moreover we showed that there was no reason to take the test in the center of working table.


  • [1] Hughes E.B., Wilson A., Peggs G.N., Design of a High- Accuracy CMM Based on Multi-Lateration Techniques, CIRP Annals - Manufacturing Technology, 49 (2000), 391-400.

  • [2] Majda P., Modelowanie i eksperymentalna ocena dokładności przestrzennego pozycjonowania zespołów posuwowych obrabiarek sterowanych numerycznie, ZAPOL, Szczecin 2012.

  • [3] Józwik J., Pieśko P., Krajewski G., Evaluation of QC10 Ballbar diagnostics method for CNC machine, Maintenance and Reliability, , 3(47) (2010), 10-20.

  • [4] Weck M., Mckeown A., Bonse R., Herbst U.: Reduction and Compensation of Thermal Errors in Machine Tools, CIRP Annals - Manufacturing Technology, 44 (1995) 2, 589-598.

  • [5] ISO 230-4:2005 Test code for machine tools -- Part 4: Circular tests for numerically controlled machine tools

  • [6] Florussen G.H.J., Spaan H.A.M.:Dynamic R-Test for Rotary Tables on 5-Axes Machine Tools, Procedia CIRP, 1 (2012), 536-539.

  • [7] Wang J., Guo J., Zhang G., Guo B., Wang H.: The technical method of geometric error measurement for multi-axis NC machine tool by laser tracer, Measurement Science and Technology, 23 (2012), 045003.

  • [8] Liu, H.L., Shi H.M., Li B., Li X., A new method and instrument for measuring circular motion error of NC machine tools, International Journal of Machine Tools & Manufacture 45 (2005) 1347-1351.

  • [9] Jastrzębski R., Kowalski T., Osówniak P., Szepke A., Wykrywanie błędów montażu precyzyjnych szybkoobrotowych wrzecion obrabiarek, Technologia i Automatyzacja Montażu, 3 (2011), 46-52.

  • [10] Lei W.T., Paung I.M., Chen-Chi Yu: Total ballbar dynamic tests for five-axis CNC machine tools, International Journal of Machine Tools & Manufacture 49 (2009) 488-499.

  • [11] Pahk H. J., Kim S. Y., Moon J.H.A new technique for Volumetric Error assessment of CNC machine tools incorporating Ball Bar measurement and 3D Volumetric Error model, International Journal of Machine Tools and Manufacture, 37 (1997), 1583-1596.

  • [12] Altintas Y., Brecher C., Weck M., Witt S.Virtual Machine Tool, CIRP Annals - Manufacturing Technology, 54 (2005) 2, 115-138.

  • [13] Altintas Y., Cao Y. Virtual Design and Optimization of Machine Tool Spindles, Annals of the CIRP, 54 (1) (2005).

  • [14] Armarego E.J.A., Whitfield R.C., Computer Based Modelling of Popular Machining Operations for Force and Power Predictions, Annals of the CIRP, 34 (1) (1985), 65-69.

  • [15] Gomez C. A. S., Castiblanco L. E. G. Osorio J. M. A. Building a virtual machine tool in a standard PLM platform, Int J Interact Des Manuf, 2016.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 24
PDF Downloads 11 11 5