Examination of Heat Treatment on the Microstructure and Wear of Tool Steels

Open access


The microstructure of the investigated X153CrMoV12 grade tool steel in delivered condition consisted of spheroidal matrix and primary carbides. The primary carbides were not dissolved under austenitisation time on either 1030°C or 1070°C. The microstructure and abrasion resistance of the steel changed due to quenching from different austenitisation temperatures. After conventional quenching from the higher austenitising temperature, there is more residual austenite in the steel than at quenching from the lower austenitisation temperature, which decreased the wear resistance. As a result of quenching from 1070°C followed by a multiple tempering process around 500 to 540°C, the retained austenite content is reduced and finely dispersed carbides are precipitated in the matrix, resulting in a higher matrix hardness and an increased wear resistance. After cryogenic treatment, the residual austenite content decreases compared to the conventional process, which leads to an increase in hardness and wear resistance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Smóling K. Czeglédi L.: Szerszámacélok kézikönyve. Szabvány Kiadó Budapest 1977. 94–95.

  • [2] MSZ EN ISO 4957: 2018. Szerszámacélok

  • [3] Voestalpine Böhler Edelstahl GmbH & Co KG: Szerszámacélok nemesacélok 45. http://www.boehler.hu/media/productdb/downloads/K110DE.pdf (accessed on: 2019. 01.28)

  • [4] Interalloy Engineering Steels and Alloys: Product datasheets Tool steel D22011 Inter-alloy Pty Ltd (accessed on: 2019. 02.15) http://www.interlloy.com.au/our-products/tool-steel/d2-tool-steel-x153crmov12

  • [5] Capdevila C. et al.: Determination of Ms temperature in steels: A Bayesian Neutral Network Model. ISIJ International 42. (2002) 894–902. https://doi.org/10.2355/isijinternational.42.894

  • [6] Gavriljuk V. G. Theisen W. Sirosh V. V.: Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Materiala 61. (2013) 1705–1715. https://doi.org/10.1016/j.actamat.2012.11.045

  • [7] Das D. Dutta A. K. Toppo V. Ray K. K.: Effect of deep cryogenic treatment on the carbide precipitation and tribological behaviour of D2 steel. Materials Manufacturing. Process 22. (2007) 474–480. https://doi.org/10.1080/10426910701235934

  • [8] Molinari A. Pellizzari M. Gialanella S. Straffelini G. Stiasny K. H.: Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of Materials Processing Technology 118. (2001) 350–355. https://doi.org/10.1016/s0924-0136(01)00973-6

  • [9] Das D. Sarkar R. Dutta A. K. Ray K. K.: Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science Engineering A 528. (2010) 589–603. https://doi.org/10.1016/j.msea.2010.09.057

  • [10] Das D. Dutta A. K Ray K. K.: Sub-zero treatments of AISI D2 steel: part II. Wear behaviour. Materials Science and Engineering A 527. (2010) 2194–2206. https://doi.org/10.1016/j.msea.2009.10.071

  • [11] Kumar S. Nagaraj M. Khedkar N. K. Bongale A.: Influence of deep cryogenic treatment on dry sliding wear behaviour of AISI D3 die steel. Materials Research Express 5/11. (2018) 116525 1–9. https://doi.org/10.1088/2053-1591/aadeba

  • [12] Kovács T. Dévényi L.: Kopásvizsgálati eljárás fejlesztése. Anyagok világa 5/1. (2004). https://www.kfki.hu/~anyag/tartalom/2004/dec/05_KT_DL.pdf

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 9
PDF Downloads 15 15 9