Machinability of Ni-based Superalloys by Indexable End Mills

Open access


The subject of this research is the machining of Ni-based super alloys using indexable end mills. The cutting ability of these materials is known to be difficult, even challenging with modern tools, so our goal is to create an efficient technology recommendation on an experimental basis. To this end, we have developed an experimental design from which results are used to determine the optimal technological parameters. This research took place at John Von Neumann University, Department of Vehicle Technology of GAMF Faculty.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Sajjadi S. A. Nategh S. Isac M. Zebarjad S. M.: Tensile deformation mechanisms at different temperatures in the Ni-base superalloy GTD-111. Journal of Materials Processing Technology 155–156. (2004) 1900–1904.

  • [2] Bhadeshia H. K. D. H.: Recrystallisation of practical mechanically alloyed iron-base and nickel-base superalloys. Materials Science and Engineering A 223. (1997) 64–77.

  • [3] Kodácsy J. Viharos Zs. J. Kovács Zs.: A forgácsolhatóság meghatározásának módszerei Ni-bázisú szuperötvözetek horonymaráskor. Gépgyártás 55(2). (2015) 125–129.

  • [4] Zhu D. Zhang X. Ding H.: Tool wear characteristics in machining of nickel-based superalloys. International Journal of Machine Tools & Manufacture 64. (2013) 60–77.

  • [5] Lendvai János: Szuperötvözet egykristályok–drágakövek a gázturbinákban. Fizikai Szemle 2006/10.

  • [6] Qi Y. Zhang Y. Zhang W. Gao J. Yuan Z. Bu W. Li Y. Guo S.: Hydrogen storage thermodynamics and kinetics of RE-Mg-Ni-based alloys prepared by mechanical milling. International Journal of Hydrogen Energy 42/29. (2017) 18473–18483.

  • [7] Ulutan D. Arisoy Y. M. Özel T. Mears L.: Empirical modeling of residual stress profile in machining nickel based superalloys using the sinusoidal decay function. Procedia CIRP 13. (2014) 365–370.

  • [8] Mali H. S. Unune D. R.: Machinability of Nickel-Based Superalloys: An Overview. Reference Module in Materials Science and Materials Engineering (2017).

  • [9] Kang X. Tang W.: Micro-drilling in ceramic- coated Ni-superalloy by electrochemical discharge machining. Journal of Materials Processing Technology 255. (2018) 656–664.

  • [10] Obikawa T. Yamaguchi M. Funai K. Kamata Y. Yamada S.: Air jet assisted machining of nickel-base superalloy. International Journal of Machine Tools & Manufacture 61. (2012) 20–26.

  • [11] Sajgalik M. Czan A. Drbul M. Danis I. Miklos M. Babik O. Joch R.: Identification of Technological Parameters when Machining Ni-Alloys by Monolithic Ceramic Milling Tool. Procedia Manufacturing 14. (2017) 51–57.

  • [12] Pleta A. Mears L.: Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy. Procedia Manufacturing 5. (2016) 1348–1356.

  • [13] Luo M. Lou H. Zhang D. Tang K.: Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy. Journal of Materials Processing Technology 252. (2018) 105–115.

  • [14] Raznjevic K.: Hőtechnikai táblázatok. Műszaki könyvkiadó Budapest 1964.

  • [15] TaeguTech: Grade Chart. (accessed on: 2019. 05.12.)

  • [16] IMC Companies: TaeguTec e-Catalogue. (accessed on: 2019. 05.12.)

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 1
PDF Downloads 22 22 4