Surface Roughness Effect in the Case of Welded Stainless Steel Corrosion Resistance

Open access

Abstract

It is known that fusion welding can cause a decrease in the corrosion resistance of the heat affected zone of unstabilized stainless steels. The reason for this problem is that the welding heat (in the heat affected zone (HAZ)) can cause chromium-carbide (Cr23C6) precipitation with the simultaneous reduction of chromium content at the local grain boundaries. The chromium content dictates the corrosion resistance level. The relationship between surface roughness and corrosion behaviour is well known. We sought to find the difference between the corrosion resistance and surface roughness relationship in the case of cold rolled stainless steel and in the case of heat treated (welding heat effect simulated) stainless steel [1-3].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Haraszti F. Kovács T.: Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel. IOP Conference Series: Materials Science and Engineering 175. (2017). https://doi.org/10.1088/1757-899X/175/1/012048

  • [2] Tedmon Jr. C. S. Vermilyea D. A. Rosolowski J. H: Intergranular corrosion of austenitic stainless steel. Journal of the Electrochemical Society 118/2. (1971) 192–202. https://doi.org/10.1149/1.2407966

  • [3] Bagyinszki Gy. Bitay E.: Hegesztéstechnika II. Berendezések és mérések. EME Kolozsvár/Cluj 2010. http://hdl.handle.net/10598/15438

  • [4] Haraszti F. Kovács T.: Galvanic corrosion occurs heat experiments by thermographic camera. IOP Conference Series: Journal of Physics: Conf. Series 1045. (2018). https://doi.org/10.1088/1742-6596/1045/1/012016

  • [5] Haraszti F: Korrózió vizsgálatok alapjai. In: A XXI. Fiatal műszakiak tudományos ülésszak előadásai. Proceedings of the 21th international scientific conference of youngth engineers. Műszaki Tudományos Közlemények 5. EME Kolozsvár/Cluj Románia 2016. 189–192. http://hdl.handle.net/10598/29058

  • [6] Kovács T. Kuzsella L.: High energy rate forming induced phase transition in austenitic steel. Journal of Physics Conference-Series 790. (2017). https://doi.org/10.1088/1742-6596/790/1/012039

  • [7] Szigeti Á. Kovács-Coskun T.: Magas hőmérsékletű korrozív közegben üzemelő acélrugó gyártástechnológiai tervezése. In: A XXI. Fiatal műszakiak tudományos ülésszak előadásai. Proceedings of the 21th international scientific conference of youngth engineers. Műszaki Tudományos Közlemények 5. EME Kolozsvár/Cluj Románia 2016. 377–380. http://hdl.handle.net/10598/29111

  • [8] Dománkova M. Kocsisová E. Slatkovský I. Pinke P.: The microstructure evolution and its effect on corrosion properties of 18Cr-12Ni-25Mo steel annealed at 500–900 °C. Acta Polytechnica Hungarica 11/3. (2014) 125–137. https://www.uni-obuda.hu/journal/Domankova_Kocsisova_Slatkovsky_Pinke_49.pdf

  • [9] Nyikes Z. Rajnai Z.: Big Data as part of the critical infrastructure. 2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY) Subotica Serbia 2015. 217–222. https://doi.org/10.1109/SISY.2015.7325383

  • [10] Reti T. Kovacs T.: A phenomenological method for the prediction of damage accumulation processes under varying external conditions. In: Materials Science Forum 414–415. (2003) 317–322. https://doi.org/10.4028/www.scientific.net/MSF.414-415.317

  • [11] Tokody D. Flammini F.: Smart systems for the protection of individuals. Key Engineering Materials 755. (2017) 190–197. https://doi.org/10.4028/www.scientific.net/KEM.755.190

  • [12] ASTM Standard Practice in A 262 for Detecting Susceptibility to Intergranular Corrosion in Austenitic Stainless Steels (1995).

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 2
PDF Downloads 61 61 3