Chemical Durability of Uranium Oxide Containing Glasses

Open access

Abstract

ZrO2 doped Na-Ba-borosilicate glasses suitable as matrix materials for HLW immobilization were synthesized and corrosion behaviour was investigated in different aqueous media. Hydrolytic stability is increased with the doping level until 5 mol %; above this value the glass vitrification tendency is strongly intensified. Unexpectedly, ZrO2 doping diminished the corrosion stability in 1M HCl solution, and low ZrO2 content showed a low corrosion resistance in 1M Na2CO3 solution also. Doping effect was negligible in case of synthetic seawater. The glass structure is significantly stabilized by the integration of the 30% UO3 added.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Skelcher B. W.: The big book of vaseline glass. Schiffer Publishing Ltd. 2002.

  • [2] El-Meliegy E. van Noort R.: Development of colour and fluorescence in medical glass ceramics. In: Glasses and glass ceramics for medical applications. Springer New York NY 2011. 149–164. https://doi.org/10.1007/978-1-4614-1228-1

  • [3] Thompson D. L.: Uranium in dental porcelain. U.S. Department of Health Education and Welfare Public Health Service Food and Drug Administration Bureau of Radiological Health Rockville MD 1976. https://www.nrc.gov/docs/ML0322/ML032230109.pdf

  • [4] Ceylan G. Köprülü H. Kurt M. Basoglu T. Güler A. U. Yapici O.: Uranium in dental porcelain. Atatürk Üniversitesi Dis Hekimigli Fakultesi Dergisi 13/3 14/1. (2003-2004) 18–22. http://dergipark.gov.tr/download/article-file/27627

  • [5] Trietley H. L.: Electrochemical transducers. In Transducers in mechanical and electronic design. CRC Press Marcel Dekker 1986. 162–175.

  • [6] Pradel A. Saint Aman E.: Potentiometric sensors (Ions and dissolved gases). In: Chemical and biological microsensors. Applications in liquid media (Szerk.: Fabry P. Fouletier J.) Wiley Online Library 2013. 81–113. https://doi.org/10.1002/9781118603871.ch4

  • [7] Koryta J.: Ion-selective electrodes. Annual review of materials science 16/1. (1986) 13–27. https://doi.org/10.1146/annurev.ms.16.080186.000305

  • [8] Kurzweil P.: Metal oxides and ion-exchanging surfaces as pH sensors in liquids. State-of-the-art and outlook. Sensors 9/6. (2009) 4955–4985. https://doi.org/10.3390/s90604955

  • [9] Nassau K. Lewand E. A.: Mildly radioactive rhinestones and synthetic spinel-and-glass triplets. Gems & Gemology 25/4. (1989) 232–235. https://www.gia.edu/gems-gemology/winter-1989-radioactive-synthetic-spinel

  • [10] Donald I. W. Metcalfe B. L. Taylor R. N. J.: The immobilization of high level radioactive wastes using ceramics and glasses. Journal of Materials Science 32/22. (1997) 5851–5887. https://doi.org/10.1023/A:1018646507438

  • [11] Ojovan M. I. Lee W. E.: Glassy wasteforms for nuclear waste immobilization. Metallurgical and Materials Transactions A 42/4. (2011) 837–851. https://doi.org/10.1007/s11661-010-0525-7

  • [12] Landa E. R. Councell T. B.: Leaching of uranium from glass and ceramic foodware and decorative items. Health Physics 63/3. (1992) 343–348. https://doi.org/10.1097/00004032-199209000-00012

  • [13] Hench L. L. Clark D. E. Campbell J.: High level waste immobilization forms. Nuclear and Chemical Waste Management 5/2. (1984) 149–173. https://doi.org/10.1016/0191-815X(84)90045-7

  • [14] Plodinec M. J.: Borosilicate glasses for nuclear waste imobilisation. Glass Technology 41/6. (2000) 186–192. https://www.ingentaconnect.com/content/sgt/gt/2000/00000041/00000006/4106186

  • [15] Sengupta P. Kaushik C. P. Dey G. K.: Immobilization of high level nuclear wastes. The indian scenario. In: On a sustainable future of the earth’s natural resources. (Szerk.: Ramkumar M.) Springer Earth System Sciences Springer Berlin Heidelberg 2013. 25–51. https://doi.org/10.1007/978-3-642-32917-3_2

  • [16] Ray D. E. Ray C. S.: A review of iron phosphate glasses and recommendations for vitrifying Hanford waste (No. INL/EXT-13-30839). Idaho National Laboratory Idaho Falls 2013. https://inldigitallibrary.inl.gov/sites/sti/sti/6013244.pdf (letöltve: 2018. május 15.)

  • [17] Plodinec M. J.: Development of glass compositions for immobilization of Savannah river plant waste. In: Scientific basis for nuclear waste management (Szerk.: McCarthy G.J.) Springer 1979. 31–35. https://www.osti.gov/servlets/purl/6227870

  • [18] Wicks G. G. McKibben J. M. Plodinec M. J. Ramsey W. G.: SRS vitrification studies in support of the US program for disposition of excess plutonium. In: Disposal of weapon plutonium–Approaches and prospects. NATO Advanced Science Institute Series Subseries 1 (Szerk.: Merz E. R. Walter C. E.) Kluwer Academic Publishers Dordrecht/Boston/London 1996. 143–154.

  • [19] Tan S. Ojovan M. I. Hyatt N. C. Hand R. J.: MoO3 incorporation in magnesium aluminosilicate glasses. Journal of Nuclear Materials 458. (2015) 335–342. https://doi.org/10.1016/j.jnucmat.2014.11.069

  • [20] Ahmadzadeh M. Marcial J. McCloy J: Crystallization of ironcontaining sodium aluminosilicate glasses in the NaAlSiO4–NaFeSiO4 join. Journal of Geophysical Research: Solid Earth 122/4. (2017) 2504–2524. https://doi.org/10.1002/2016JB013661

  • [21] Woignier T. Primera J. Reynes J: Nanoporous glasses for nuclear waste containment. Journal of Nanomaterials 2016. (2016) 1–10. https://doi.org/10.1155/2016/4043632

  • [22] Doremus R.H.: Diffusion of reactive molecules in solids and melts. Wiley 2002.

  • [23] Baucke F. G. K.: The origin of the glass electrode response. In: Glass… Current Issues (Szerk.: Wright A.F. Dupuy J.) NATO ASI Series (Series E: Applied Sciences) 92. Springer Dordrecht 1985. 481–505. https://doi.org/10.1007/978-94-009-5107-5_40

  • [24] Veress E. Hopârtean E. Savici C. Bokor A.: Sticle electrodice de pH. I. Elaborarea si caracterizarea fizică a unor sticle litice. Revista de Chimie (București) 38. (1987) 495–499.

  • [25] Moimas L. De Rosa G. Sergo V. Schmid C.: Bioactive porous scaffolds for tissue engineering applications: Investigation on the degradation process by Raman spectroscopy and scanning electron microscopy. Journal of Applied Biomaterials and Biomechanics 4/2. (2006) 102–109. https://doi.org/10.1177/228080000600400205

  • [26] Millero F. J.: Chemical oceanography CRC Press 1996.

  • [27] Collier N. Harrison M. Brogden M. Hanson B: Release of uranium from candidate wasteforms. Mineralogical Magazine 76/8. (2012) 2939–2948. https://doi.org/10.1180/minmag.2012.076.8.09

  • [28] Fábián M. Sváb E. Zimmermann M.: Structure study of new uranium loaded borosilicate glasses. Journal of Non-Crystalline Solids 380. (2013) 71–77. https://doi.org/10.1016/j.jnoncrysol.2013.09.004

  • [29] Calas G. Galoisy L. Cormier L. Ferlat G. Lelong G.: The structural properties of cations in nuclear glasses. Procedia Materials Science 7. (2014) 23–31. https://doi.org/10.1016/j.mspro.2014.10.005

  • [30] Hopf J. Kerisit S. N. Angeli F. Charpentier T. Icenhower J. P. McGrail B. P. Windisch C. F. Bur-ton S. D. Pierce E. M.: Glass water interaction: Effect of high-valence cations on glass structure and chemical durability. Geochimica et Cosmochimica Acta 181. (2016) 54–71. https://doi.org/10.1016/j.gca.2016.02.023

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 11
PDF Downloads 84 84 4