Inverse Ambiguous Functions and Automorphisms on Finite Groups

Open access

Abstract

If G is a finite group, then a bijective function f : G → G is inverse ambiguous if and only if f(x)−1 = f−1(x) for all x ∈ G. We give a precise description when a finite group admits an inverse ambiguous function and when a finite group admits an inverse ambiguous automorphism.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Y. Berkovich Groups of Prime Power Order Vol. 1 De Gruyter Expositions in Mathematics 46 Walter de Gruyter GmbH & Co. KG Berlin 2008.

  • [2] R. Cheng A. Dasgupta B.R. Ebanks L.F. Kinch L.M. Larson and R.B. McFadden When does f−1 = 1/f? Amer. Math. Monthly 105 (1998) no. 8 704–717.

  • [3] R. Euler and J. Foran On functions whose inverse is their reciprocal Math. Mag. 54 (1981) no. 4 185–189.

  • [4] M. Griffiths f(f(x)) = x windmills and beyond Math. Mag. 83 (2010) no. 1 15–23.

  • [5] M. Herzog Counting group elements of order p modulo p2 Proc. Amer. Math. Soc. 66 (1977) no. 2 247–250.

  • [6] H. Kurzweil and B. Stellmacher The Theory of Finite Groups. An Introduction Springer-Verlag New York 2004.

  • [7] D.J. Schmitz Inverse ambiguous functions on fields Aequationes Math. 91 (2017) no. 2 373–389.

  • [8] D. Schmitz and K. Gallagher Inverse ambiguous functions on some finite non-abelian groups Aequationes Math. 92 (2018) no. 5 963–973.

  • [9] R. Schnabel Elemente der Gruppentheorie Mathematik für die Lehrerausbildung B.G. Teubner Stuttgart 1984.

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2018: 0.15

Target audience:

researchers in all branches of pure and applied mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 32
PDF Downloads 107 107 74