Lie Derivations on Trivial Extension Algebras

Open access

Abstract

In this paper we provide some conditions under which a Lie derivation on a trivial extension algebra is proper, that is, it can be expressed as a sum of a derivation and a center valued map vanishing at commutators. We then apply our results for triangular algebras. Some illuminating examples are also included.

References

  • [1] Bade W.G., Dales H.G., Lykova Z.A., Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 137 (1999), no. 656.

  • [2] Benkovic D., Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra 65 (2015), 141-165.

  • [3] Cheung W.-S., Mappings on triangular algebras, PhD Dissertation, University of Victoria, 2000.

  • [4] Cheung W.-S., Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), 299-310.

  • [5] Du Y., Wang Y., Lie derivations of generalized matrix algebras, Linear Algebra Appl. 437 (2012), 2719-2726.

  • [6] Ebrahimi Vishki H.R., Mirzavaziri M., Moafian F., Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc. 31 (2016), 247-259.

  • [7] Erfanian Attar A., Ebrahimi Vishki H.R., Jordan derivations on trivial extension algebras, J. Adv. Res. Pure Math. 6 (2014), 24-32.

  • [8] Ghahramani H., Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. 39 (2013), 635-645.

  • [9] Ji P., Qi W., Charactrizations of Lie derivations of triangular algebras, Linear Algebra Appl. 435 (2011), 1137-1146.

  • [10] Martindale III W.S., Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187.

  • [11] Moafian F., Higher derivations on trivial extension algebras and triangular algebras, PhD Thesis, Ferdowsi University of Mashhad, 2015.

  • [12] Moafian F., Ebrahimi Vishki H.R., Lie higher derivations on triangular algebras revisited, Filomat 30 (2016), no. 12, 3187-3194.

  • [13] Mokhtari A.H., Ebrahimi Vishki H.R., More on Lie derivations of generalized matrix algebras, Preprint 2015, arXiv: 1505.02344v1.

  • [14] Wang Y., Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512-525.

  • [15] Zhang Y., Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), 4131-4151.

Journal Information


Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all branches of pure and applied mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 18
PDF Downloads 5 5 4