Universally Kuratowski–Ulam Spaces And Open-Open Games

Open access

Abstract

We examine the class of spaces in which the second player has a winning strategy in the open-open game. We show that this spaces are not universally Kuratowski–Ulam. We also show that the games G and G7 introduced by P. Daniels, K. Kunen, H. Zhou [Fund. Math. 145 (1994), no. 3, 205–220] are not equivalent.

[1] Bartoszyński T., Combinatorial aspects of measure and category, Fund. Math. 127 (1987), no. 3, 225–239.

[2] Daniels P., Kunen K., Zhou H., On the open-open game, Fund. Math. 145 (1994), no. 3, 205–220.

[3] Fremlin D., Natkaniec T., Recław I., Universally Kuratowski–Ulam spaces, Fund. Math. 165 (2000), no. 3, 239–247.

[4] Fremlin D., Miller A.W., On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.

[5] Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.

[6] Fremlin D., Universally Kuratowski–Ulam spaces, a note from: http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

[7] Kucharski A., Plewik S., Game approach to universally Kuratowski–Ulam spaces, Topology Appl. 154 (2007), no. 2, 421–427.

[8] Kucharski A., Plewik S., Inverse systems and I-favorable spaces, Topology Appl. 156 (2008), no. 1, 110–116.

[9] Kuratowski K., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math. 19 (1932), 247–251.

[10] Oxtoby J., Measure and category, Springer-Verlag, New York, 1971.

[11] Pawlikowski J., Undetermined sets of point-open games, Fund. Math. 144 (1994), 279–285.

[12] Scheepers M., Combinatorics of open covers (V): Pixley–Roy spaces of sets of reals, and ω-covers., Topology Appl. 102 (2000), no. 1, 13–31.

[13] Szymański A., Some applications of tiny sequences, in: Proceedings of the 11th winter school on abstract analysis (Železna Rudá, 1983), Rend. Circ. Mat. Palermo (2) 1984, Suppl. no. 3, pp. 321–328.

[14] Tsaban B., Strong γ-sets and other singular spases, Topology Appl. 153 (2005), 620–639.

Journal Information


Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all branches of pure and applied mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 15
PDF Downloads 7 7 1