Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

Open access

Abstract

Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined.

The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

Baron G.V., 1994. Industrial Gas Separation using PSA. [In:] E.F. Vasant (ed) Separation Technology, Elsevier Science B.V. Amsterdam, 201-208.

Bałys M., Buczek B., Ziętkiewicz J., 2002. Structure and Separation Abilities of Carbon Molecular Sieves. Inżynieria i Ochrona Środowiska, t. 5, nr 2, 117-123 (In Polish).

Bałys M., Buczek B., Ziętkiewicz J., 2000. Modelowanie procesu i doświadczalna weryfikacja odzyskiwania metanutechniką zmiennociśnieniową. [W:] Układ węgiel kamienny-metan w aspekcie desorpcji i odzyskiwania metanu z gazów kopalnianych, red. M. Żyła, Nauka i technika górnicza, UWN-D, Kraków, 201-263.

Buczek B., 1993. Development of properties within particles of active carbons obtained by a steam activation process. Langmuir, 9, 2509-2512.

Buczek B., 1996. Methane recovery from coal mine gases using carbonaceous adsorbents. [In:] G. Yuguang, T.S. Golosinski (eds.) Mining Science and Technology, A.A. Balkema, Rotterdam, Brookfield, p. 19-22.

Czapliński A., Lasoń M., 1965. Sorpcja dwutlenku węgla przy wysokich ciśnieniach na witrytach o różnym stopniu uwęglenia. Arch. Górnictwa, 10, 53-59.

Dubinin M.M., 1987. Adsorption properties and microporous structures of carbonaceous adsorbents, Carbon, Vol. 25, No 5, 593-598.

Jankowska H., Świątkowski A., Choma J., 1991. Active Carbon. Ellis Horwood, New York.

Mc Enaney B., 1987. Estimation of the dimensions of micropores in active carbons using the Dubinin-Radushkevich equation. Carbon, Vol. 25, No 1, 69-75.

Morishige K., 2011. Adsorption and separation of CO2/CH4 on amorphous silica molecular sieve. Journal of Physical Chemistry C, Vol. 115, No 19, 9713-9718.

Olajossy A., 2012. Method of effective use of methane and nitrogen separated from natural gas. Arch. Min. Sci., Vol. 57, No 2, p. 443-450.

Olajossy A., 2007. Technical and economic possibilities of enriching natural gas with methane. Polityka Energetyczna, t. 10, z. 1, s. 119-130.

Rufford T.E., Watson G.C.Y., Saleman T.L., Hofman P.S., Jensen N.K., May E.F., 2013. Adsorption equilibria and kinetics of methane plus nitrogen mixtures on the activated carbon Norit RB3. Industrial & Engineering Chemistry Research., Vol. 52, No 39, 14270-14281.

Sheikh N.A., Hassan M.M., Loughlin K.F., 1996. Adsorption equlibria and rate parameters for nitrogen and methane on Maxsorb activated carbon. Gas Sep & Purif., 10, 161-168.

Suzuki M., 1990. Adsorption Engineering. Kodansha, Tokyo.

Velenzuela D.P., Myers A.L., 1989. Adsorption Equilibrium Data Handbook. Prentice-Hall, Englewood Cliffs, New York.

Yang H.W., Yin C.B., Jiang B., Zhang D.H., 2014. Optimalization and analysis of a VPSA process for N2/CH4 separation, Sep. & Purif. Tech., 134, 232-240.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 151 9
PDF Downloads 73 65 7