Liquefied Natural Gas Storage of Variable Composition / Magazynowanie Skroplonego Gazu Ziemnego O Zmiennym Składzie

Open access


Thanks to the increasing diversification of LNG supply sources, being a result of the growing number of LNG liquefaction installations over the World, increase of short-term trade contracts and general trend to globally liberalize gas markets, reception terminals have to cope with the broad range of qualitatively diversified LNG deliveries from various sources. Different LNG deliveries potentially have different density caused by different gas composition. Although the LNG composition depends on LNG source, it mainly consists of methane, ethane, propane, butane and trace nitrogen. When a new supply of LNG is transported to the tank, the LNG composition and temperature in the tank can be different from LNG as delivered. This may lead to the liquid stratification in the tank, and consequently the rollover. As a result, LNG rapidly evaporates and the pressure in the tank increases. More and more restrictive safety regulations require fuller understanding of the formation and evolution of layers. The paper is focused on the analysis of liquid stratification in the tank which may take place when storing LNG, and which process leads to the rapid evaporation of considerable quantities of LNG. The aim was to attempt modeling of the process of liquid stratification in an LNG tank. The paper is closed with the results of modelling.

Baker N., Creed M., 1996. Stratification and rollover in liquefied natural gas storage tanks. Trans. Chem., 74 (Part B).

Bates S., Morrison D.S., 1997. Modelling the behaviour of stratified liquid natural gas in storage tanks: a study of rollover phenomenon. Int. J. Heat Mass Transfer, 40 (8).

Chaterjee N., Geist J.M., 1972. The effects of stratification on boil-off rates in LNG tanks. Pipeline Gas J., 199 (40).

Chaterjee N., Geist J.M., Spontaneous stratification in LNG tanks containing nitrogen. Paper 76-WA/PID-6, ASME Winter Annual Meeting, New York, December 5.

Deshpande K.B., Zimmerman W.B., Tennant M.T., Webster M.B., Lukaszewski M.W., 2011. Optimization methods for the real-time inverse problem posed by modelling of liquefied natural gas storage. Chemical Engineering Journal, 170 (1).

Germeles A., 1975. A model for LNG tank rollover. Advances in Cryogenic Engineering. 21 Plenum Press.

Globe S., Dropkin D., Natural convection heat transfer in liquids confined by two horizontal plates and heated from below. J. Heat Trans, C81 (24).

Hashemi H.T., Wesson H.R., 1971. Cut LNG storage costs. Hydrocarbon Processing.

Heestand J., Shipman C.W., Meader J.W., 1983. A predictive model for rollover in stratified LNG tanks. A.I.Ch.E. Journal, 29.

Hisazumi Y., Yamasaki Y., Sugiyama S., 1998. Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycle. Applied Energy, 60.

Klosek J., McKinley C., 1968. Densities of liquefied natural gas and of low molecular weight hydrocarbons. First International Conference on LNG. Chicago.

Lukaszewski M.W., Zimmerman W.B., Tennant M.T., Webster M.B., 2013. Application of inverse methods based algorithms to Liquefied Natural Gas (LNG) storage management. Chem. Eng. Res. Des.

Łaciak M., 2011. Problemy techniczne i technologiczne eksploatacji terminali rozładunkowych LNG. Wiertnictwo, Nafta, Gaz, Tom 28 (4).

Łaciak M., 2012. Properties of artificial gaseous mixtures for their safe use and support the natural gas supply networks. Arch. Min. Sci., Vol. 57, No 2.

Łaciak M., 2013. Thermodynamic processes involving Liquefied Natural Gas at the LNG receiving terminals. Arch. Min. Sci., Vol. 58, No 2. p. 349-359.

Łaciak M., Nagy S., 2010. Problemy bezpieczeństwa technicznego i charakterystyka zagrożeń związanych z terminalem rozładunkowym LNG. Wiertnictwo, Nafta, Gaz, Tom 27 (4).

Morrison D.S., Richardson A., 1990. An experimental study on the stability of stratified layers and rollover in LNG storage tanks. Proceedings of the Low Temperature Engineering and Cryogenics Conference. Southampton, U.K.

Sarsten J.A., 1972. LNG stratification and rollover. Pipeline Gas J., 199.

Siemek J., Nagy S., 2012. Energy Carriers Use in the World: Natural Gas - Conventional and Unconventional Gas Resources. Arch. Min. Sci., Vol. 57, No 2.

Vitale S.A., 2012. LNG and Gas Thermodynamics. Vol. II. GTI.

Zimmerman W.B., 1998. The effect of chemical equilibrium on the formation of stable stratification. Appl. Sci. Res., 59.

Zimmerman W.B., Rees J.M., 2007. Rollover instability due to double diffusion in a stably stratified cylindrical tank. AIP, Physics of fluids, 19.

Gaz de France, Shell Research Ltd., Osaka Gas, Tokyo Gas, CFP-Total: Experimental study of stratified LNG performed at Nantes Cryogenic Testing Station, 1987 to 1990.

REFPROP, NIST SRD, Version 9.0.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 198 12
PDF Downloads 129 111 9