Confined Phase Envelope of Gas-Condensate Systems in Shale Rocks

Open access

Abstract

Natural gas from shales (NGS) and from tight rocks are one of the most important fossil energy resource in this and next decade. Significant increase in gas consumption, in all world regions, will be marked in the energy sector. The exploration of unconventional natural gas & oil reservoirs has been discussed recently in many conferences. This paper describes the complex phenomena related to the impact of adsorption and capillary condensation of gas-condensate systems in nanopores. New two phase saturation model and new algorithm for search capillary condensation area is discussed. The algorithm is based on the Modified Tangent Plane Criterion for Capillary Condensation (MTPCCC) is presented. The examples of shift of phase envelopes are presented for selected composition of gas-condensate systems.

Adamson A.W., 1990. Physical Chemistry of Surfaces. J. Wiley & Sons Inc.

Ahmed T., 1989. Hydrocarbon Phase Behavior (Contributions in Petroleum Geology and Engineering). Gulf Publishing Co.

Altman R.M. et al., 2014. Understanding Mechanisms for Liquid Dropout from Horizontal Shale Gas Condensate Wells. Society of Petroleum Engineers. doi:10.2118/170983-MS.

Ambrose R.J., 2011. Micro-Structure of Gas Shales and Its Effects on Gas Storage and Production Performance. Master’s Thesis, University of Oklahoma, Norman, OK.

Brusilovsky A.I., 1990. Mathematical Simulation of Phase Behavior of Natural Multicomponent Systems at High Pressures with an Equation of State. SPE 20180.

Campos M.D., 2010. Uncertainties in Shale Gas-_in-Place Calculations: Molecular Simulation Approach. Ph.D. Dissertation, University of Oklahoma, Norman, OK, 2011.

Campos M.D., Akkutlu I.Y., Sigal R.F., 2009. A Molecular Dynamics Study on Natural Gas Solubility Enhancement in Water Confined to Small Pores, Paper SPE124491-MS.

Cao Minh et al., 2012. 2D-NMR Applications in Unconventional Reservoirs. SPE 161578.

Clarkson C.R., Haghshenas B., 2012. Modeling of Supercritical Fluid Adsorption on Organic-Rich Shales and Coal. SPE 164532.

Clarkson C.R., Wood J.M., Burgis S.E., Aquino S.D., Freeman M., Birss V., 2012. Nanopore Structure Analysis and Permeability Predictions for a Tight Gas/Shale Reservoir Using Low-Pressure Adsorption and Mercury Intrusion Techniques. SPE 155537.

Crowe C.M., Nishio M., 1975. Convergence Promotion in the Simulation of Chemical Process - the General Dominant Eigenvalue Method. AIChE J.,Vol. 21, No. 3, 528-533.

Danesh A.S., Dandekar A.Y., Todal A.C., Sarkar R., 1991. A Modified Scaling Law andParachor Approach for Improved Prediction of Interfacial Tension of Gas-Condensate System. SPE 2270.

Defay R., Prigogine I., 1966. Surface Tension and Adsorption. Longmans, London. Derouane E.G., 2007. On the physical state of molecules in microporous solids. Microporous and Mesoporous Materials. 104. 46-51.

Devegowda D., Sapmanee K., Civan F., Sigal R.F., 2012. Phase Behavior of Gas Condensates in Shales Due to Pore Proximity Effects: Implications for Transport, Reserves and Well Productivity. Society of Petroleum Engineers. doi:10.2118/160099-MS.

Dhanapal K. et al., 2014. Phase Behavior and Storage in Organic Shale Nanopores: Modeling of Multicomponent Hydrocarbons in Connected Pore Systems and Implications for Fluids-in-place Estimates in Shale Oil and Gas Reservoirs. SPE-169008-MS.

Didar B.R., Akkutlu I.Y., 2013. Pore-Size Dependence of Fluid Phase Behavior and Properties in Organic-Rich Shale Reservoirs. SPE 164099.

Elamin A. et al., 2013. Simulation of Multicomponent Gas Flow and Condensation in Marcellus Shale Reservoir. SPE 159869.

Everett D.H., 1972. IUPAC manual of symbols and terminology for physicochemical quantities and units. App. II, Part I.Pure Appl. Chem. Vol. 21, p. 584-594.

Fanchi J., 1990. Calculation of Parachors for Compositional Simulation: An Updated. SPE Res. Eng., p. 43 SPE 19453.

Firincioglu T. et. al. 2012. Thermodynamics of Multiphase Flow in Unconventional Liquids rich Reservoirs. SPE 123455.

Guo P. et al., 1996. A Theoretical Study of the Effect of Porous Media on the Dew Point Pressure of a Gas Condensate.SPE 25644.

Hamada Y., Koga K., Tanaka H., 2007. Phase equilibria and interfacial tension of fluids confined in narrow pores.J. Chem. Phys., 127 (8): 084908-1-084908-9.

Hartman R.C. et al., 2011. Shale Gas-in-Place Calculations Part 2 - Multicomponent Gas Adsorption Effects. SPE 144097-MS.

Honarpour et al., 2012. Characterization of Critical Fluid, Rock, and Rock-Fluid Properties - Impact on Reservoir Performance of Liquid-Rich Shales. SPE 158042.

IEA, 2012. World Energy Outlook: Golden Rules in the Golden Age of Natural Gas. Report IEA.

IEA, 2011. World Energy Outlook 2011: Golden Age of Natural Gas? Report IEA.

Jhaveri B.S., Youngren G.K., 1988. Three Parameter Modification of the Peng Robinson Equation of State to Improve Volumetric Predictions. SPE Res. Eng., (Aug. 1988), p. 1033.

Kaliski M., Nagy S., Siemek J., Sikora A., Szurlej A., 2012. Unconventional natural gas-USA, the European Union, Poland. Archiwum Energetyki, 42, 109-122 (In Polish).

Kang S., Fathi E., Ambrose R.J., Akkutlu I.Y., Sigal R.F., 2011. Carbon Dioxide Storage Capacity of Organicrich Shales.SPE Journal, Vol. 16 (4), 842-855.

Kang S.M., 2011. Carbon Dioxide Storage Capacity of Barnett Shale. MSc, Oklahoma Univ.

Klimkowski Ł., Nagy S., 2014. Key Factors in Shale Gas Modeling and Simulation. Arch. Min. Sci., Vol. 59, No 4, p. 987-1004.

Lee S-T., 1999. Capillary-Gravity Equilibria for Hydrocarbon Fluids in Porous Media. SPE 19650.

Lin H., Duan Y-Y., 2005. Empirical correction to the Peng-Robinson equation of state for the saturated region. Fluid Phase Equilibria, 233 (2005) 194-203.

Ma Y., Jamili A., 2014. Modeling the Effects of Porous Media in Dry Gas and Liquid Rich Shale on Phase Behavior.Society of Petroleum Engineers. doi:10.2118/169128-MS.

Ma Y., Jin L., Jamili A., 2013. Modifying van der Waals Equation of State to Consider Influence of Confinement on Phase Behavior. Society of Petroleum Engineers. doi:10.2118/166476-MS.

Michelsen M.L., 1982a. The Isothermal Flash Problem I. Stability analysis. Fluid Phase Equilibria Vol. 8, p. 1-19.

Michelsen M.L., 1982b. The Isothermal Flash Problem I. Phase Split Calculation. Fluid Phase Equilibria Vol. 8, 21-40.

MIT, 2011. Future of Natural Gas, An Interdisciplinary MIT Study. Massachusetts Inst. of Tech., Boston.

Nagy S., 1992. Isenthalpic throttling effect in multiphase and multicomponent systems. Archiwum Termodynamiki, Vol. 12, No. 1-4, p.116-128.

Nagy S., 2002. Capillary adsorption effects in gas condensate systems in tight rocks. Arch. Min. Sci., Vol. 47, No 2, p. 205-253

Warowny W., Nagy S., Śniatała K., Roszak R., Szołkowski S., 2004. Wyznaczanie punktu rosy węglowodorów w gazie ziemnym. Gaz, Woda i Technika Sanitarna, 114-122 [In Polish].

Whitson C., Sunjerga S., 2012. PVT in Liquid-Rich Shale Reservoirs. SPE 155499.

Whitson C.H., Brule M R., 2000. Phase Behavior. SPE Monograph Series. Vol. 20.

Zhang Y., Civan F., Devegowda D., Jamili A., Sigal R. F., 2013. Critical Evaluation of Equations of State for Multicomponent Hydrocarbon Fluids in Organic Rich Shale Reservoirs. Society of Petroleum Engineers. doi:10.1190/ URTEC2013-182.

Zuo Y., Stenby E.H., 1997. Corresponding-States and Parachor Models for the Calculation of Interfacial Tensions. Can. J. Chem. Eng., 75, 1130-1137.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 189 12
PDF Downloads 87 85 6