A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

Open access

Abstract

In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated.

By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag.

The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

References

  • Agar G. E., Chia J., Requis C. L., 1998. Flotation rate measurements to optimize an operating circuit. Min. Eng., 11 (4), p. 347-360.

  • Ahmed I. B., Gbor P. K., JI C. Q., 2000. Aqueous sulfur dioxide leaching of Cu, Ni, Co, Zn, and Fe from smelter slag in the absence of oxygen. Can. J. Chem. Eng., 78 (4), p. 694-703.

  • Altundogan H. S, Tumen F., 1997. Metal recovery from copper converter slag by roasting with ferric sulfate. Hydrome-tallurgy, 44 (1-2), p. 261-267.

  • Arslan C., Arslan F., 2002. Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometal-lurgy, 67, p. 1-7.

  • Banza A. N., Gock E., Kongolo K., 2002. Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy, 67, p. 63-69. Barnes C. D., Lumsdaine J., O’Hare S. M., 1993. Copper converter slag treatment at Mount Isa Mines Limited, Mount Isa, Qld. In: AusIMM Proceedings, 298 (1), p. 31. Barrios M., 1991. Study of flotation of slags. Oficina Minera Osvaldo Martinez, Taltal, Chile.

  • Bota G., Gican I., Poputa G., 1995. The beneficiation of the non-ferrous metals from secondary resources at regia autonoma a Cuprului Deva-Romaina. [In:] Krstev, B. & Golomeov, B. (Eds.): Proceedings of 6th Balkan Mineral Processing Symposium, Ohrid, Macedonia, p. 426-431.

  • Brezani I., Zelenak F., 2010. MatLab tool for modeling first order flotation. http://www.mathworks.com/matlabcentral/ fx_files/28703/2/content/html/Flotation_modeling.html.

  • Brożek M., Młynarczykowska A., Turno A., 2003. The relationships between deterministic and stochastic models of flotation. Arch. Min. Sci., Vol. 48, No 3, p. 299-314.

  • Brożek M., Młynarczykowska A., 2006. Application of the stochastic model for analysis of flotation kinetics with coal as an example. Physicochem. Probl. Miner. Process., Vol. 40, p. 31-44.

  • Brożek M., Młynarczykowska A., 2007. Analysis of kinetics models of batch flotation. Physicochem. Probl. Miner. Process., Vol. 41, p. 51-65.

  • Brożek M., Młynarczykowska A., 2010. Probability of detachment of particle determined according to the stochastic model of flotation kinetics. Physicochem. Probl. Miner. Process., Vol. 44, p. 23-34.

  • Bruckard W. J., Somerville M., Hao F., 2004. The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials. Miner. Eng., 17, p. 495-504.

  • Bulut G., 2006. Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24, p. 118-124.

  • Cilek E. C., 2004. Estimation of flotation kinetic parameters by considering interactions of the operating variables. Miner. Eng., 17 (1), p. 81-85.

  • Das B., Mishra B. K., Angadi S., Pradhan S. K., Prakash S., Mohanty J., 2010. Characterization and recovery of copper values from discarded slag. Waste Manage. Res., 28 (6), p. 561-567.

  • Demetrio S., Ahumada J., Duran A., Mast E., Rojas U., Sanhueza J., Reyes P., Morales E., 2000. Slag cleaning: The Chilean copper smelter expirence. JOM, 52 (8), p. 20-25.

  • Dowling E. C., Klimpel R. R, Aplan F. F., 1985. Model discrimination in the flotation of a porphyry copper ore. Miner. Metall., 2 (2, p. 87-101.

  • Gorai B., Jana R., Premchand K., 2003. Characteristics and utilisation of copper slag — a review. Resour. Conserv. Recy., 39, p. 299-313.

  • Gul A., Bulut G., Kangal O., Önal G., 2003. Benefication of ancient copper slags. In: Proceedings of X Balkan Mineral Processing Congress, Varna, Bulgaria, Sofia, p. 831-836.

  • Harris C. C., Chakravarti A., 1970. Semi-batch flotation kinetics: species distribution analysis. Trans. AIME, 247, p. 162-172.

  • Herreros O., Quiroz R., Manzano E., Bou C., Vinals J., 1998. Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy, 49, p. 87-101.

  • Imaizumi T., Inoue T., 1965. Kinetic consideration of froth flotation. In: Proceedings of 6th International Mineral Processing Congres, Cannes, p. 563-579.

  • Imaizumi T., Inoue T., 1968. Some aspects of flotation kinetics. In: Proceedings of 8th International Mineral Processing Congres, Leningrad, p. S-15.

  • Jameson C. J., Nam S., Young M. M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng., 9 (3), p. 103-118.

  • Jia C. Q., Xiao J. Z., Orr R. G., 1999. Behavior of metals in discard nickel smelting slag upon reacting with sulfuric acid. J. Environ. Sci. Heal. A. 34 (5), p. 1013-1034.

  • Jowett A., 1974. Resolution of flotation recovery curves by a differential plot method. Trans. Inst. Min. Metall., 85, p. C263-C266.

  • Kalinowski K., Kaula R., 1995. Transport delay in a mathematical models of batch coal flotation kinetics. Arch. Min. Sci., Vol. 40, p. 339-349.

  • Kalinowski K., Kaula R., 2013. Verification of flotation kinetics model for triangular distribution of density function of flotability of coal particles. Arch. Min. Sci., Vol. 58, 4, p. 1279-1287.

  • Kelsall D. F., 1961. Application of probability assessment of flotation systems. T. Am. I. Min. Met. Eng, 70, p. 191-204.

  • Klimpel R. R., 1980. Selection of chemical reagents for flotation. In: Mular A., Bhappu R. Eds., Mineral Processing Plant Design, 2nd edn. AIME, New York, p. 907-934.

  • Kongolo K., Mwema M. D., Banza A N., Gock E., 2003. Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Miner. Eng. 16, p.1371-1374.

  • Kracht W., Vallebuona G., Casali A., 2005. Rate constant modeling for batch flotation, as a function of gas dispersion properties. Miner. Eng., 18 (11), p. 1067-1076.

  • Loveday B. K., 1966. Analysis of froth flotation kinetics. Trans. IMM, 75: p. C219-C225.

  • Nishkov I., Grigorova I., 2009. Practical experience and education of waste recycling and sustainable development in Bulgaria. In: Proceedings of 4th Symposium Recycling technologies and sustainable development, Kladovo, Serbia, p. 54-63.

  • Oliveira J. F., Saraiva S. M., Pimenta J. S., Oliveira A. P. A., 2001. Kinetics of pyrochlore flotation from Arax mineral deposits. Miner. Eng. 14 (1), p. 99-105.

  • Osborn G. A., Garner F. A., Veasey T. J., 1986. Recovery of metal values from secondary copper slags. In: Proceedings of the 1st International Mineral Processing Symposium, Izmir, Turkey, p. 46-64.

  • Sarrafi A., Rahmati B., Hassani H. R., Shirazi H. H. A., 2003. Recovery of copper from reverberatory furnace slag by flotation (technical note). Miner. Eng. 17: p. 457-459.

  • Shen H., Forssberg E., 2003. An overview of recovery of metals from slags. Waste Manage., 23, p. 933-949.

  • Sokolovic J., Stanojlovic R., Barbulovic B., Markovic Z. S., Stirbanovic Z., 2007. Analysis of state pollution on environmental in RTB Bor. In: Proceedings of XV Ecological Truth 2007, Sokobanja, Serbia, p.174-180.

  • Sokolovic J., Stanojlovic R., Markovic Z., 2012. The effects ofpretreatment on the flotation kinetics of waste coal. Int. J. Coal Prep. Util., 32 (3), p. 130-142.

  • Stanojlovic R., Stankovic Z., Markovic Z. S., Antic D., Sokolovic J., Trujic D., Milovanovic S., Stefanovic T., Sukletovic P., Nikolic M., 2002. The study of techno-Economic Justification for Processing Smelter Slag in Existing Technological Process. The Study, University of Belgrade, Technical faculty in Bor, Serbian Edition.

  • Stanojlovic R., Stirbanovic Z., Sokolovic J., 2008. Wastefree technology for processing smelter slag from Bor Copper Mine. J. Min. Metall. Sect. A, 44 (1), p.44-50.

  • Stanojlovic R., Sokolovic J., 2011. Smelting slag - Production and processing of copper slag from Smelter in Bor. The Monographs, University of Belgrade, Technical Faculty in Bor, Bor, Serbia.

  • Stanojlovic R., Stirbanovic Z., Sokolovic J., 2012. New technological procedure for sustainable processing of mining technological wastes. Min. Eng., 1 (2012), p. 75-88.

  • Stanojlovic R., Sokolovic J., Milosevic N., 2013. Integrated environmental pollution by wastes from Copper Mine Bor, Serbia. Environ. Eng. Manag J., (forthcoming in press).

  • Stirbanovic Z., Markovic Z. S., Stanojlovic R., Sokolovic J., 2008. World experience in the processing of smelter slag as examples of economic and environmental feasibility. In: Proceedings of XVI Ecological Truth 2008, Sokobanja, Serbia, p.197-201.

  • Stirbanovic Z., Markovic Z., 2011. The Effect of Copper Bearing Particles Liberation on Copper Recovery from Smelter Slag by Flotation. Sep. Sci. Technol., 46 (16), p. 2496-2500.

  • Tomlinson H. S., Fleming M. G., 1963. Flotation rate studies. In: Proceedings of VI IMPC, Cannes, Pergamon Press, Oxford - New York, p. 563-579.

  • Tumen F., Bailey N. T., 1990. Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy, 25, p. 317-328.

  • USEPA, 1993. Slag Reprocessing, Magma Copper Company’s San Manuel Facility. Report to U. S. Environmental Protection Agency.

  • Xu M., 1998. Modified flotation rate constant and selectivity index. Miner. Eng., 11 (3), p. 271-278.

  • Ziyadanogullari B., 2000. Recovery of copper and cobalt from concentrate and converter slag. Sep. Sci. Technol., 35, p. 1963-1971.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 2 2 2