Analysis of Yielding Steel Arch Support with Rock Bolts in Mine Roadways Stability Aspect

Open access


The result of the search for new technological solutions in the field of support for roadways in coal mines has in recent years been the widespread use of steel arch with rockbolt support systems. The efficiency of these systems is affected among other things by the option of installing rock bolts after the actual driving the mine roadway, the increased load capacity that these systems can support, and their resistance to dynamic weight. Large variation in the way that these steel arch support can be connected using different types of rock bolts necessitates mining research revealing the effectiveness of such solutions. Although the steel arch with rockbolt support system is used in the majority of European coal mines, it is still not possible to apply templates of schemes due to the diversity of geological and mining conditions. Therefore, throughout a period of several years, the authors of this article conducted research in situ under conditions of different schemes related to connecting arched support frames with rock bolts, with only selected results being presented in the article. The measurements of convergence, load supported by the system frame, load supported by the rock bolts, and the stratification of roof rocks were analyzed, carried out in two roadways with yielding steel arch support in which strand bolts were applied. The article also proposes the index for working maintenance nuw, used in preliminarily assessing the stability of a given working with a limited number of data concerning geomechanical conditions. Additionally considered are empirical methods used in Poland for designing steel arch with rock bolt support systems.

The results of mine research indicate that strengthening yielding steel support with strand bolts through steel beams maintains the stability of a roadway, even when exposed to the exploitation stress. Aside from the impact of exploitation, deformations of the support system are negligible, despite the fact that the tensile forces acting on the rock bolts can reach values of up to 160 kN. Under favorable geological and mining conditions, support system frames can be spread up to 1.5 m apart when using rock bolts between them. The conducted measurement of convergence during a three year period revealed a compression amounting to a few centimeters. The results obtained by the research fully confirm the effectiveness of combined yielding steel arch with rock bolt support systems under different mining conditions.

Álvarez-Fernández M. I., Prendes-Gero M. B., Álvarez-Garcia I. N., Oliva-González A. O., 2013. The design and results of an innovative instrumentation method for monitoring and improving the excavation of a road tunnel in a highly fractured and strained rock mass. Eurock 2013: Rock Mechanics for Resources, Energy and Environment, Kwaśniewski & Łydżba (eds), Taylor & Francis Group, London, p. 557-562.

Brady B. H. G., Brown E. T., 2004. Rock Mechanics for UndergroundMining. Third editions. Kluwer Academic Publishers.

Brodny J., 2012. Analysis of operation of new construction of the frictional joint with the resistance wedge. Archives of Mining Science, Vol. 57, No 1, p. 209-227.

Daniłowicz R., Skrzyński K., 2003. Określenie współczynnika wzmocnienia górotworu za pomocą kotwi w wyrobiskach korytarzowych. Przegląd Górniczy, nr 3, p. 8-11 (in Polish).

Feng X. T., Hudson J. A., 2011. Rock Engineering Design. CRC Press, Taylor & Francis.

Horyl P., Šňupárek R., 2012. Reinforcing measures of steel roadway support in rockburst prone areas. Archives of Mining Science, Vol. 57, No. 1, p. 193-208.

Jing L., 2003. A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering. International Journal of Rock Mechanics and Mining Sciences, Vol. 40, Iss. 3, p. 283-353.

Kovalevska I., Fomychev V., 2011. Optimization of frame-bolt support in the development workings, using computer modelling method. World Mining Congress & Expo, 11-16 September 2011, Istanbul, Vol. 1, ed. Çinasi Eskikaya, p. 267-278.

Majcherczyk T., Małkowski P., Niedbalski Z.,2003. Innovations in support of headings in coal-mines. Proceedings of the conference “Geomechanics 2003: Modern Geomechanical Methods in the Mining Industry and the Underground Civil Engineering and Tunnel Construction”, N. Nikolaev, K. Georgiev, V. Parushev (eds), Nessebar 9-13.06.2003, p. 187-194.

Majcherczyk T., Małkowski P., Niedbalski Z., 2008. Badania nowych rozwiązań technologicznych w celu rozrzedzania obudowy podporowej w wyrobiskach korytarzowych. Akademia Górniczo-Hutnicza, Wydział Górnictwa i Geoinżynierii, Katedra Geomechaniki, Budownictwa i Geotechniki, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków (in Polish).

Majcherczyk T., Małkowski P., Niedbalski Z., 2011. Stand-and-roof-bolting support: an effective way of roadway reinforcement. 22nd World Mining Congress & Expo: 11-16 September 2011, Ístanbul, Vol. 1, S. Eskikaya & A. Ofset (eds), Ankara, p. 279-285.

Niedbalski Z., 2014. Prognoza utrzymania funkcjonalności wyrobisk korytarzowych w kopalniach węgla kamiennego. Seria: Rozprawy, Monografie, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków (in Polish).

Niedbalski Z., Małkowski P., Majcherczyk T., 2013. Monitoring of stand-and-roof-bolting support: design optimization. Acta Geodynamica Et Geomaterialia, Volume 10, Issue 2, p. 215-226.

Palmstrom A., Stille H., 2007. Ground Behaviour and Rock Engineering Tools for Underground Excavations. Tunnelling and Underground Space Technology, vol. 22, p. 363-376.

Panek L. A., 1956. Design of Bolting Systems to Reinforce Bedded Mine Roof. U. S. Bureau of Mines, R. I. 5155.

Polska Norma PN-90/B-03200. Obliczanie konstrukcji stalowych (in Polish).

Piechota S., Korzeniowski W., 2002. Współczynnik wzmocnienia górotworu w obudowie podporowo-kotwiowej w wyrobiskach korytarzowych. Przegląd Górniczy, nr 6, p. 17-21 (in Polish).

Prusek S., Bock S., 2008. Assessment of rock mass stresses and deformations around mine workings based on three-dimensional numerical modelling. Archives of Mining Science, Vol. 53, No 3, p. 349-360.

Prusek S., Lubosik Z., 2007. Monitoring of a longwall gate road maintained behind the caving extraction front. Freiberger Forschungshefte: Geoingenieurwesen, p. 84-95.

Rotkegel M., 2013. ŁPw steel arch support — designing and test results. Journal of Sustainable Mining Vol. 12, No. 1, p. 34-40.

Toraño J., Rodríguez Díez R., Rivas Cid J. M., Casal Bariciella M. M., 2002. FEM modeling of roadways driven in a fractured rock mass under a longwall influence. Computers and Geotechnics, no 29, p. 411-431.

Turek M., 2012. Bezpieczeństwo obudowy podporowo-kotwowej w warunkach występowania wstrząsów górotworu. Praca Zbiorowa, Główny Instytut Górnictwa, Katowice (in Polish).

Woll T., Polysos N., Lüttig F., 2004. Einsatz der Ankertechnikbei der Auffahrung einer Abbaubegleitstrecke neben einer Kohlenfeste. Aachen International Mining Symposium 2004: Ankerausbau im Bergbau, Band 3, RWTH Aachen, p. 353-370.

Thyrock K., Dereli Y., 2011. Ground control for multiple seam mining in German coal mines. World Mining Congress & Expo, 11-16 September 2011, Ístanbul, Vol. 1, ed. Çinasi Eskikaya, p. 441-444.

Xiu Z., Jiang J., 2004. Rockbolting in Gateroads of Top Coal Caving Longwall Faces. Aachen International Mining Symposium 2004: Ankerausbau im Bergbau, Band 3, RWTH Aachen, p.195-210.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 183 11
PDF Downloads 129 99 6