IN-SITU TREATMENT OF GROUNDWATER CONTAMINATED WITH UNDERGROUND COAL GASIFICATION PRODUCTS / OCZYSZCZANIE IN-SITU WÓD PODZIEMNYCH ZANIECZYSZCZONYCH PRZEZ PRODUKTY PODZIEMNEGO ZGAZOWANIA WĘGLA

Open access

Abstract

In the paper the contaminants that may be generated in Underground Coal Gasification (UCG) process were listed and include mainly mono- and polycyclic aromatic hydrocarbons, phenols, heavy metals, cyanides, ammonium, chloride and sulphate. As a method of UCG contaminated groundwater treatment a Permeable Reactive Barrier technology was proposed. To assess the effectiveness of this technology two tests were carried out. Granulated activated carbon (GAC) and zeolite, and granulated activated carbon and scrap iron were applied in the first and second test respectively. For these materials the hydro geological parameters called reactive material parameters were determined and discussed. The results of the experiments showed that GAC seems to be the most effective material for phenols, BTX, PAH, cyanides and slightly lowers ammonia removal, while zeolites and scrap iron removed free cyanide, ammonia and heavy metals respectively.

Beiting er E., Tarnowski F., Gehrke M., Burneier H., 1998. Permeable treatment walls for in-situ groundwater remediation - how to avoid precipitation and bio-clogging. Contaminated Soil ’98, Vol. 1, Sixth International FZK/TNO Conference, Edinburgh.

Blanco-Martinez D.A., Giraldo L., Moreno-Pirajan J.C., 2009. Effecto of the pH in the adsorption and in the immersion enthalpy of mono-hydroxylated phenols form aqueous solutions on activated carbons. J. Hazard. Mater., 169.

Chang Chiun-Fen, Chng Ching-Yuan, Chen Ken-Hung, Tsai Wen-Tien, Shie Je-Lueng, Chen Yi-Hung., 2004. Adsorption of naphthalene on zeolite from aqueous solution. Journal of Colloid and Interface Science, 277, 29-34, Elsevier.

Chul Choi Young, Xu Li, Lutgarde Raskin, Eberhard Morgenroth, 2008. Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors. Water Research.

Desai J.D. Ramakrishna C., 1998. Microbial degradation of cyanides and its commercial application. J. Sci. Ind. Res., 57.

Domenico P.A., Schwartz F.W., 1990. Physical and Chemical Hydrogeology. John Wiley & Sons, New York, 824 p.

Gala A., Sanak-Rydlewska S., 2011. Removal of Pb2+ ions from aqueous solutions on plum stones crushed to particle size below 0.5 mm. Arch. Min. Sci., Vol. 56, No 1, p. 71-80.

Gavaskar A., Gupta N., Sass B., Janosy R., Hicks J., 2000. Design guidance for application of permeable reactive barriers for groundwater remediation. Florida, Battelle Columbus Operations, Ohio.

Gavaskar A., Sass B, Gupta N., Drescher E., Yoon W.S., Sminchak J., Hicks J., Condit W., 2003. Evaluating the longevity and hydraulic performance of Permeable Reactive Barriers at Department of Defense Sites. Battelle Columbus Operations Ohio.

Gottardi G., Galli E., 1985. Natural zeolites. Springer, Berlin, p. 256.

Humenick M.J., Mattox C.F., 1980. Organic groundwater contaminants from underground coal gasification. In Situ, 4(2): 78-85.

Humenick M. J., 1984. Water pollution control for underground coal gasification. Journal of Energy Engineering, 110(2):100-112. ITRC (Interstate Technology & Regulatory Council), 2011. Permeable Reactive Barrier Technology Update, PRB-5.

Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Technology Update Team. Washington: http:// www.itrcweb.org. (Dostęp: 28.04.2013)

Ivanova E., Karsheva M., Koumanova B., 2010. Adsorption of ammonium ions onto natural zeolite, Journal of the University of Chemical Technology and Metallurgy, 45, 3.

Kapusta K., Stańczyk K., Korczak K., Pankiewicz M., Wiatowski M., 2010. Wybrane aspekty oddziaływania procesu podziemnego zgazowania węgla na środowisko wodne, Prace Naukowe GIG, Górnictwo i Środowisko, nr 4, Główny Instytut Górnictwa Katowice.

Kapusta K., Stańczyk K., 2011. Pollution of water during underground coal gasification of hard coal and lignite. Fuel, 90(2011):1927-1934.

Kiran Vedula Ravi, Chandrajit Balomajumder, 2011. Simultaneous adsorptive removal of cyanide and phenol from industrial wastewater: optimization of process parameters. Research Journal of Chemical Sciences, Vol. 1(4).

Kleczkowski A. S. (redaktor) i in., 1990. Mapa obszarów głównych zbiorników wód podziemnych (GZWP) w Polsce wymagających szczególnej ochrony (wersja robocza). Instytut Hydrogeologii i Geologii Inżynierskiej AGH, Kraków.

Liu Shuqin, Wang Yongtao, Yu Li, Oakey John., 2006. Volatilization of mercury, arsenic and selenium during underground coal gasification. Fuel, Volume 85, Issues 10-11, Pages 1550-1558.

Liang Zh, Ni J., 2009. Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. J. Hazard. Mater., 166.

Marciniak M., Przybyłek J., Herzig J., Szczepańska J., 1998. Laboratoryjne i terenowe oznaczenie współczynnika filtracji utworów półprzepuszczalnych. Sorus, Poznań.

Massol-Deya Arturo and Ning-His Tang, 1996. Treatment of groundwater contaminated with aromatic hydrocarbons in a fluidized bed reactor. US Department of the Interior.

Matsis V.M., Grigoropoulou H. P., 2007. Interaction of activated carbon and dissolved oxygen. Proceedings of the 10th International Conference on Environmental Science and Technology, Kos Island, Greece.

McLaren J.R., Farguhar G. J., 1973. Factors affecting ammonia removal by clinoptilolite. J. Environ. Eng. Division - ASCE, 99.

Pazdro Z., Kozerski B., 1990. Hydrogeologia ogólna. Wyd. Geologiczne, Warszawa.

Puls R. W., Powell M. R., Blowes D. W., Gillham R. W., Schultz D., Sivavec T., Vogan J. L., Powell P. D., 1998.

Permeable reactive barrier technologies for contaminant remediation. Washington: United States Environmental Protection Agency.

Roehl K. E., Meggyes T., Simon F. G. Stewart D. I., 2005. Long-term Performance of Permeable Reactive Barriers.

Trace metals and other contaminants in the environment, Vol. 7, ELSEVIER.

Stuerner D.H., Douglas J. N., Morris C. J., 1982. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environmental Science Technology, 16: 582-587.

Suponik T., 2010. Ensuring Permeable Reactive Barrier Efficacy and Longevity. Archives Of Environmental Protection, vol. 36, no. 3, pp. 59-73.

Suponik T., 2011. Optimization of the PRB (Permeable Reactive Barriers) parameters for selected area of dumping site. The Publishing House of the Silesian University of Technology (monographs no 328), Gliwice.

Suponik T., 2012. Ocena parametrów jakości wody przepływającej przez kolumnę wypełnioną żelazem metalicznym. kwartalnik „Górnictwo i Geologia” Tom 7, Zeszyt 2, Wydawnictwo Politechniki Śląskiej, Gliwice, s. 259-271.

Suponik T., 2013. Groundwater treatment with the use of zero-valent iron in the Permeable Reactive Barrier Technology. Physicochemical Problems of Mineral Processing, vol. 49, issue 1, pp. 13-23.

Vasyuchkow Yu.F., 2008. Unconventional technologies of coal seams extraction and processing, Arch. Min. Sci., Vol. 53, No 2, p. 215-220.

Wachowicz J., Janoszek T., Iwaszenko S., 2010. Model tests of the coal gasification process. Arch. Min. Sci., Vol. 55, No 2, p. 249-262. PN-88/B-04481.

http://www.carbon.arg.pl (Dostęp: 28.04.2013)

www.subiopolska.com (Dostęp: 28.04.2013)

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 12
PDF Downloads 34 34 6