Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

Open access


In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method.

Buzek J., Dankmayer-Łączny J., 1999. Alkalia w procesie wielkopiecowym. Hutnik Wiadomości Hutnicza, Nr 10, p. 448-452.

Diez M.A., Alvarez R., Barriocanal C., 2002. Coal for Metallurgical coke production: predictions of coke quality andfuture requirements for cokemaking. International Journal of Coal Geology, Vol. 50, p. 389-412.

Groβpietsch K.H. at all, 2000. Coke requiraments by european blast furnance operators in the turn of the millennium. Proceedings of the 4th International Cokemaking Congress, Paris, p. 2-20.

Hodges N.J. at all, 1983. Chlorine in coal. A refiew of its origin and mode of occurrence. Journal of the Institute of Energy, Vol. 2, p. 158-169.

Karcz A., Strugała A., 2008. Increasing chances of utilizing the domestic coking coal resources through technologicaloperations in coal blend preparation. Gospodarka Surowcami Mineralnymi, Vol. 24, z. 1/1, p. 5-18.

Kowalczyk J., Strzelec G., 2004. Jastrzębska Spółka Węglowa S.A. - jakość produkcji i technologie wzbogacania węgla. Inżynieria Materiałowa nr 2, p. 28-44.

Kuhl J., 1980. Substancja mineralna w węglu. Przegląd górniczy, Vol. 36, p. 61-66.

Manzoori A.R., Agarwal P.K., 1992. The fate organically bund inorganic elements and sodium chloride during fluizedbed combusion of high sodium, high sulphur long rank coals. fuel. Vol. 71, p. 513-522.

Nycz R., Zieleźny A., 2004. Jastrzębska Spółka Węglowa S.A. - technologia wzbogacania węgla i jakość produkcji. Inżynieria mineralna, Nr 2, p. 2-19.

Rooney K.A. at all, 1987. Developments in coke quqlity and the improved performance of a 3000 cubic metre blastfurnace. Proccedings of the 1st international Cokemaking Congress, Essen, preprints Vol. 1-C3., p. 1-17.

Strugała A., 1998. Substancja mineralna węgla kamiennego i jej przemiany w procesie koksowania. Gospodarka Surowcami Mineralnymi, Vol. 14, z. 1, p. 5-30.

Strugała A., Bytnar K., 2004. Związki alkaliczna w koksie - źródła i formy ich występowania. Karbo, Wyd. Specjalne, s. 84-90.

Wasilewski R., Kosewska M., Sobolewski A., Figa J., 2000. Badania utylizacji soli balastowych pochodzących z oczyszczaniagazu koksowniczego przez koksowanie ze wsadem węglowym. Karbo, Nr 10, p. 411-415.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 65 4
PDF Downloads 48 41 4