Microscopic Analysis of Shear Bands Formation in Luna Limestone Under Quasistatic Triaxial Loading Conditions / Analiza mikroskopowa pasm ścinania próbek wapienia luna poddanych quasistatycznym trójosiowym obciążeniom

Open access

The article presents the results of microscopic analyses of shear bands of carbonate rocks subjected to triaxial compression. Strength tests were performed in axisymmetric loading conditions, at various confining pressures and strain rates. The layout and nature of phenomena occurring in shear bands at various strain rate loading conditions were analysed under the microscope on thin rock sections of damaged samples. The principal part of the study involves identification of damage types in shear bands, which mainly depend on the rock deformation rate and petrography. Also, quantitative analysis of particular types of damage in shear bands was performed and their dependence on the mechanical tests conditions. The last item discussed in this article is the quantitative analysis of the width of shear bands at various loading conditions.

Amitrano D., Schmittbuhl J., 2002. Fracture roughness and gouge distribution of a granite shear band. J. Geophys. Res., Vol. 107, No. B12.

Baud P., Schubnel A., Wong T.-F., 2000. Dilatancy, compaction and failure mode in Solnhofen limestone. J. Geophys. Res., Vol. 195, pp. 19289-19303.

Bésuelle P., 2001. Evolution of Strain Localisation with Stress in a Sandstone: Brittle and Semi-Brittle Regimes., Phys. Chem. Earth (A), Vol. 26, No. l-2, pp. 101-106.

Bésuelle P., Baud P., Wong T.-F., 2003. Failure Mode and Spatial Distribution of Damage in Rothbach Sandstone in theBrittle-ductile Transition, Pure Appl. Geophys., 160, 851-868.

Bésuelle P., Desrues J., Raynaud S., 2000. Experimental characterization of the localization phenomenon inside a Vosgessandstone in a triaxial cell. Int. J. Rock Mech. & Mining Sci., Vol. 37, pp. 1223-37.

Desrues J., 2004. Tracking Strain Localization in Geomaterials Using Computerized Tomography, in: X-ray CT for Geomaterials, Otani, J. and Obara, Yuzo Ed., Balkema, pp. 15-41.

Desrues J., Viggiani G., 2004. Strain localization in sand: an overview of the experimental results obtained in Grenobleusing stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech., Vol. 28, pp. 279-321.

Dunham R.J., 1962. Classification of carbonate rocks according to depositional texture, in: Ham W.E. Classification of carbonate rocks. American Association of Petroleum Geologists Memoir. 1. pp. 108-121.

El Bied A., Sulem J., Martineau F., 2002. Microstructure of shear zones in Fontainebleau sandstone. Int. J. Rock Mech. Min. Sci., Vol. 39, 7, 917-932.

Folk R.L., 1959. Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin, Vol. 43, p. 1-38

Folk R.L., 1968. Petrology of Sedimentary Rocks. Austin. University of Texas Publication.

Gustkiewicz J., Gamond J.F., Carrio-Schaffhauser E., 2007. Variations of the Mechanical Properties of a Sandstone Due toDeformation and Confining Pressure, in Relation to Microstructures, Arch. Min. Sci., Vol. 52, No 4, p. 505-534.

Hallbauer D.K., Wagner K., Cook N.G.W., 1973. Some observations concerning the microscopic and mechanical behaviorof quartzite specimens in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci., Vol. 10, 713-726.

Issen K.A., Rudnicki J.W., 2000. Conditions for compaction bands in porous rock. J. Geophys. Res., Vol. 105, pp. 21529-21536.

Klein E., Baud P., Reuschle T., Wang T.-F., 2001. Mechanical Behaviour and Failure Mode of Bentheim Sandstone UnderTriaxial Compression. Phys. Chem. Earth (A), Vol. 26, No. 1-2, pp. 21-25.

Louis L., Wong T.-F., Baud P., Tembe S., 2006. Imaging strain localization by X-ray computed tomography: discretecompaction bands in Diemelstadt sandstone. Journal of Structural Geology 28, 762-775.

Olsson W., Peng S., 1976. Microcrack nucleation in marble. Int. J. Rock Mech. Min Sci. & Geomech. Abstr., Vol. 13, 53-59.

Ord A., Vardoulakis I., Kajewski R., 1991. Shear band formation in Gosford sandstone. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 28, 5, 397-409.

Paterson M.S., Wong T.-F., 2005. Experimental rock deformation - the brittle field, Second Edition, Springer.

Renner J., Rummel F., 1996. The effect of experimental and microstructural parameters on the transition from brittlefailure to cataclastic flow of carbonate rocks. Tectonophysics, 258 151-169.

Rudnicki J.W., 2004. Shear and compaction band formation on an elliptic yield cap. J. Geophys. Res., Vol. 109, Iss. B3.

Tondi E., Atonellini M., Aydin A., Marchegiani L., Cello G., 2006. The role of deformation bands, stylolites and shearedstylolites in fault development in carbonate grainstones of Majella Mautain, Itally. Journal of Structural Geology 28, Issue 3, 376-391.

Vajdova V., Zhu W., Chen T.-M.N., Wong T.-F., 2010. Micromechanics of brittle faulting and cataclastic flow in Tavellimestone. Journal of Structural Geology 32, 1158-1169.

Viggiani G., Lenoir N., Bésuelle P., D.M., Desrues J., Kretzschmer M., 2004. X-raymicro tomographyfor studyinglocalizeddeformationinfine-grainedgeomaterials undertriaxial compression, Comptes rendus Mécanique, Académie des Sciences vol. 332 , pp. 819-826.

Wong T.-F., 1982. Micromechanics of faulting in westerly granite. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., Vol. 19, Issue 2, pp. 143-160.

Wub X.Y., Bauda P., Wong T.-F., 2000. Micromechanics of compressive failure and spatial evolution of anisotropicdamage in Darley Dale sandstone. Int. J. Rock Mech. Min. Sci., Vol. 37, 143-160.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 68 2
PDF Downloads 30 28 4