Determination of Dynamic Loads of Sprocket Drum Teeth and Seats by Means of a Mathematical Model of the Longwall Conveyor / Wyznaczenie Obciążeń Dynamicznych Zębów I Gniazd Bębna Łańcuchowego Za Pomocą Modelu Matematycznego Przenośnika Ścianowego

Open access

Abstract

Scraper conveyors are one of the key machines forming part of mechanised longwall systems. They are currently the only means of transporting the mined rock from longwalls in hard coal mines. The hauling force caused by the drive is transmitted onto a link chain through drive wheels with their external shape corresponding to a geometric polygon. The number of teeth (seats) in such wheels ranges between 5 and 8. The horizontal links running on the drum are arranged in the drive wheel seats and are meshing with the teeth segments. The geometric relationships between the sprocket drum and the links are decisive for the position of the chain links in the seats. The abrasive wear of the chain parts and of the drive drum parts occurring due to conveyor operation is increasing the chain pitch and decreasing the wheel pitch. The position of a link in the seats changes as a result along with the load on the sprocket drum teeth and seats. Sprocket drums are the weakest element in longwall conveyors. It is, therefore, urgently necessary to determine the dynamic loads of such drums’ teeth and seats. The article presents a physical model and a mathematical model of a longwall conveyor created for the purpose of determination of dynamic loads of the sprocket drum teeth and seats. The results of computer simulations are also presented (dynamic loads: in chains, dynamic loads of sprocket drums and dynamic loads of sprocket drums’ teeth and seats) carried out using the created mathematical model for a 350 m long face conveyor.

Dolipski M., 1997. Dynamika przenośników łańcuchowych. Podręcznik akademicki. Wyd. Pol. Śl., Gliwice.

Dolipski M., 2001. Przeciążenie dynamiczne sprzęgieł podatnych podczas rozruchu przenośnika ścianowego z silnikami

dwubiegowymi. Mechanizacja i Automatyzacja Górnictwa, nr 3.

Dolipski M., Remiorz E., Sobota P., Osadnik J., 2010. Wpływ zwiększenia podziałki łańcucha na położenie jego ogniw w gniazdach bębnów łańcuchowych. Wiadomości Górnicze, nr 9.

Hoseinie S. H.; Ataei M., Khalokakaie R., 2011. Reliability modeling of water system of longwall shearer machine. Arch. Min. Sci., Vol. 56, No 2.

Kallrath E., Brychta P., 1986. Strömungskupplungen für schweranlaufende Strebförderer. Glückauf, nr 12.

Krauze K., Kotwica K., Rączka W., 2009. Laboratory and underground tests of cutting heads with disc cutters. Arch. Min. Sci., Vol. 54, No 2.

Krauze K., 2004. Selection of combined cutter-loader parameters for unidirectional and bidirectional longwall mining systems and the investment costs involved in mining operations. Arch. Min. Sci., Vol. 49, No 2.

Langosch U., Ruppel U., 2008. State of the art dimensioning of shield support to optimize longwall roof control. Arch. Min. Sci., Vol. 53, No 3.

Strümpfel H., 1989. Zum Antrieb von Ketten mit großer Teilung. dhf, nr 11

Uhr M., 1993. Untersuchungen zur Verbesserung des Zusammenwirkens von Kette und Kettenrad. Glückauf, nr 6

Wölfe M., Flöte K., 2000. Causes of vibration and stress loadings of chain-operated face equipment resulting from vibration. Vorträge anläßlich des zweiten internationalen Kolloquiums Hochleistungs-Strebbetriebe. RWTH Aachen, 13-14 Juni.

Ziegler M., Ketting M., Scholten J., 2007. Dynamische Beanspruchung von Hobel- und Strebförderanlagen. Glückauf, Nr. 11.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 135 9
PDF Downloads 77 71 8