Prediction of penetration rate of rotary-percussive drilling using artificial neural networks – a case study / Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych – studium przypadku

Open access

Abstract

Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.

Postęp wiercenia przy wierceniach skał jest jednym z podstawowych parametrów decydujących o opłacalności przedsięwzięcia. Całkowite koszty prowadzenia prac wiertniczych określa się w oparciu o prognozowane tempo postępu wiercenia, parametr ten uwzględnia się następnie przy planowaniu prac wydobywczych. Niektóre spośród licznych czynników wpływających na postęp wiercenia przy użyciu wiertła obrotowo-udarowego nie zostały jeszcze w pełni rozpoznane. Przy prognozowaniu postępu wiercenia prowadzonego przy użyciu urządzeń udarowo-obrotowych uwzględniono cztery rodzaje skał obecnych w kopalni Sangan, leżącej w prowincji Khorasan-Razavi w północno -wschodniej części Iranu. Wybrane czynniki mające wpływ na postęp prac wiertniczych pogrupowano w trzy kategorie: właściwości skał, warunki prowadzenia prac wiertniczych oraz plan prowadzenia wiercenia. Parametry określające właściwości skał to gęstość, jakość skał (RQD) i wytrzymałość na ściskanie jednoosiowe, wytrzymałość skał otrzymywana w oparciu o test brazylijski, porowatość, twardość Mohra, moduł Younga, prędkość propagacji fali, Parametry określające warunki prowadzenia wierceń obejmują: udar, prędkość obrotowa, siła naporu, ciśnienie płukania, zaś parametry związane z planem prowadzenia wiercenia obejmują: wymiary otworu wiertniczego i długość. Właściwości skał określono laboratoryjnie, warunki i plan wierceń badano w terenie. Korelacji pomiędzy prędkością postępu wiercenia i właściwościami skał oraz warunkami i planem prac wiertniczych poszukiwano przy użyciu sztucznych sieci neuronowych (ANN). Zbadano 102 otwory wiertnicze, przeanalizowano warunki prowadzenia wierceń, plany prac i zarejestrowano czasy ich prowadzenia. W celu znalezienia korelacji pomiędzy tymi danymi a prognozowaną prędkością wiercenia wykorzystano oprogramowanie MATLAB. W treningu sieci neuronowej wykorzystano 77 danych, 25 z nich otrzymano w drodze testowania wzorca. Wyniki działania sieci neuronowych oceniono w oparciu o błąd średniokwadratowy (RMSE) oraz współczynnik korelacji (R2). Dla zoptymalizowanego modelu (14-14-10-1) błąd średniokwadratowy i współczynnik korelacji wynoszą odpowiednio 0.1865 i 86%. Analiza wrażliwości wykazała istnienie silnej korelacji pomiędzy prędkością wiercenia a jakością skały, prędkością obrotową wiertła i średnicą otworu wiertniczego. Wysoki współczynnik korelacji i niska wartość błędu średniokwadratowego otrzymana dla tych modeli wskazuje, że metody wykorzystujące sztuczne sieci neuronowe są odpowiednie do prognozowania prędkości wiercenia.

References
  • Aalizad S.A., 2011. Prediction penetration of rotary-percussive drilling using artificial neural networks- A case studySangan Iron mine Project (SIMP). MSc. Thesis, Islamic Azad University, Science and Research Branch, Tehran, Iran.

  • Bilgesu H.I., Tetrick L.T., Altmis U., Mohaghegh S., Ameri S., 1997. A new approach for the prediction of rate of penetration(ROP) values. Proceeding of SPE Eastern Reginal Meeting, Lexington, USA, 175-179.

  • Chandok J.S., Kar I.N., Tuli S., 2008. Estimation of furnace exit gas temperature (FEGT) using optimized radial basisand backpropagation neural networks. J. Rock Energy Convers Manag., 49, 1989-1998.

  • Esmaeili M., Aghajani Bazazi A., Borna S., 2011. Reliability analysis of a fleet of loaders in Sangan iron mine. Arch. Min. Sci., 56, 4, 629-640.

  • Giri A.K., Swamliama C., Singh T.N., Singh D.P., 1997. Strength properties and their relations with abrasiveness ofsome Indian Rocks. 1st Asian Rock Mech. Symp., Korea, 537-541

  • Hartman H.L., 1959. Basic studies of percussion drilling. Min. Eng., 11, 68-75.

  • Haykin S., 1999. Neural network: A comprehensive foundation. Prentice hall.

  • Howarth D.F., Adamson W.R., Berndt J.R., 1986. Correlation of model tunnel boring and drilling machine performanceswith rock properties. Int. J. Rock Mech. Min. Sci., 23, 171-175.

  • Hustrulid W., 1999. Blasting principles for open pit mining, Vol. 1, General design concept. A. A. Balkema, Rotterdam, Brookfield.

  • Jimeno C.L., 1995. Rock drilling and blasting. A.A. Balkema, Rotterdam, Brookfield, pp. 8-35.

  • Jong Y.H., Lee C.I., 2004. Influence of geological conditions on the powder factor for tunnel blasting. Int. J. Rock Mech. Min. Sci., 41, 533-538.

  • Lundberg B., 1973. Energy transfer in percussive rock destruction-I. Int. J. Rock Mech. Min. Sci., 10, 381-399.

  • Menhrotra K., Mohan C.K., Ranka S., 1997. Elements of Artificial Neural Networks. Cambridge: MIT Press.

  • Muro T., Fukugava R., Watanabe M., 1988. Rotary percussion forces affecting a drilling rate of bit for rock mass. Proceeding of Japan Society Civil Engineering, 391, 206-213.

  • Neaupane K.M., Achet S.H., 2004. Use of back propagation neural network for landslide monitoring: a case study inthe higher Himalaya. Engineering Geology, 74, 213-226

  • Oddsson B., 1982. Rock quality designation and drilling rate correlated with lithology and degree of alteration in volcanicrocks from the 1979 Surtsey drill hole. Surtsey Research Progress Report IX, 94-97.

  • Paithankar A.G., Mishra G.B., 1980. Drillability of rocks in percussive drilling from energy per volume as determinedwith microbit. Min. Engineering, 21, 1407-1410.

  • Pandey A.K., Jain A.K., Singh D.P., 1991. An investigation into rock drilling. Int. J. Surf. Min. Recl., 5, 114-139.

  • Paone J., Madson D., Bruce W.E., 1969. Drillability studies-laboratory percussive drilling. USBM RI 7300, 537-541.

  • Protodyakonov M.M., 1962. Mechanical Properties and Drillability of Rocks. Proceedings of the Fifth Symposium on Rock Mechanics, University of Minnesota, Minneapolis, MN, 103-118.

  • Kahraman S., 1999. Rotary and percussive drilling prediction using regression analysis. Int. J. Rock Mech. Min. Sci., 36, 981-989.

  • Kahraman S., 2002. Correlation of TBM and drilling machine performances with rock Brittleness. Eng. Geol., 65, 269-283.

  • Kahraman S., Bilgin, N. and Feridunoglu, C., 2003. Dominant rock properties affecting the penetration rate of percussivedrills. Int. J. Rock Mech. Min. Sci., 40, 711-723.

  • Kapageridis I.K., 2002. Artificial neural network technology in mining and environmental applications. Mine Planning and Equipment Selection, 172-179.

  • Ross T.J., 1995. Fuzzy logic with engineering applications. New York: McGraw-Hill.

  • Rustan A., 1998. Rock Blasting terms and Symbols. A.A. Balkema, Rotterdam, Brookfield.

  • Sazidy M.S., Rideout D.G., Butt S.D., Arvani F., 2010. Modeling percussive drilling performance using simulatedvisco-elastic-plastic rock medium. 44th US Rock mechanics Symposium and 5th U.S.-Canada Rock mechanics Symposium, USA, 434-443.

  • Singh T.N., Jain A., Sarkar K., 2009. Petrophysical parameters affecting the microbit drillability of rock. Int. J. Mining and Mineral Engineering, 1(3), 261-277.

  • Singh T.N., Monjezi M., 2003. Abrasivity of some Indian rocks-an experimental approach. Int. Conf. on Drilling, Iran, 39-46.

  • Tawadrous A.S., 2006. Evaluation of artificial neural networks as a reliable tool in blast design. Int. Soc. Explos. Eng., 1, 1-12.

  • Teal R., 1965. The concept of specific energy in rock drilling. Int. J. Rock Mech. Min. Sci., 2, 57-73.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 2 2 2