# Fractional Calculus of the Extended Hypergeometric Function

Recep Şahin 1  and Oğuz Yağcı 1
• 1 Department of Mathematics, Kırıkkale, Turkey
Recep Şahin
• Department of Mathematics, Kırıkkale University, Faculty of Science, Kırıkkale, Turkey
• Search for other articles:
and Oğuz Yağcı
• Corresponding author
• Department of Mathematics, Kırıkkale University, Faculty of Science, Kırıkkale, Turkey
• Email
• Search for other articles:

## Abstract

Here, our aim is to demonstrate some formulae of generalization of the extended hypergeometric function by applying fractional derivative operators. Furthermore, by applying certain integral transforms on the resulting formulas and develop a new futher generalized form of the fractional kinetic equation involving the generalized Gauss hypergeometric function. Also, we obtain generating functions for generalization of extended hypergeometric function..

## 1 Introduction

The classical Pochhammer symbol (λ )ν is given as follows: [1, 4, 14, 23, 26, 34]

$(λ)ν=Γ(λ+ν)Γ(λ)(λ,ν∈ℂ\ℤ0−)={1λ(λ+1)⋯(λ+n−1)(ν=0)(ν=n∈ℕ)$
and Γ(λ ) is the familiar Gamma function whose Euler’s integral is (see, e.g., [1, 4, 14, 23, 26])
$Γ(z)=∫0∞e−ttz−1dt (ℜ(z)>0).$
From (1) and (2), it is easy to see the following integral formula
$(λ)v=1Γ(λ)∫0∞e−ttλ+v−1dt(ℜ(λ+ν)>0).$

Throughout this paper, let ℂ, $ℤ0−$, and ℕ be the sets of complex numbers, non-positive integers and positive integers respectively, and assume that min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ)} > 0. Recently, various generalization of beta functions have been introduced and investigated (see, e.g., [7, 8, 9, 10, 13, 16, 17, 21, 22, 27, 29, 37] and the references cited therein). In , Şahin et al. introduced and studied following generalization of the extended gamma function as follows:

$Γp,q(κ,μ)(z)=∫0∞tz−1exp(−tκp−qtμ)dt,(ℜ(z)>0,ℜ(p)>0,ℜ(q)>0,ℜ(κ)>0,ℜ(μ)>0).$
It is easily seen that the special cases of (4) returns to other forms of gamma functions. For example, $Γ1,0(1,1)(z)=Γ(z),Γ1,q(1,1)(z)=Γq(z).$.

Using the above (4), Şahin et. al.  defined a new generalization of the extended Pochhammer symbol such as;

$(λ;p,q;κ,μ)ν:={Γp,q(κ,μ)(λ+ν)Γ(λ),ℜ(p)>0,ℜ(q)>0,ℜ(κ)>0,ℜ(μ)>0(λ)ν,p=1 q=0 κ=1 μ=0$
and, also they obtained integral representation of (5) as follows:

$(λ;p,q;κ,μ)ν:=1Γ(λ)∫0∞tλ+ν−1exp(−tκp−qtμ)dt(ℜ(p)>0,ℜ(q)>0,ℜ(κ)>0,ℜ(μ)>0).$

Moreover, they gave the generalization of the extended Gauss hypergeometric function, confluent hypergeomtric function and Appell hypergeometric functions as follows :

$Fp,qκ,μ(a,b,c;z):=∑n=0∞(a;p,q;κ,μ)n(b)n(c)n⋅znn!,$
$Φp,qκ,μ(a,b;z):=∑n=0∞(a;p,q;κ,μ)n(b)n⋅znn!,$
$Fp,q1(κ,μ)[a;b,c;d;x,y]=∑m,n=0∞(a;p,q;κ,μ)m+n(b)m(c)n(d)m+nxmm!ynn!max(|x|,|y|)<1$
and
$Fp,q2(κ,μ)[a;b,c;d,e;x,y]=∑m,n=0∞(a;p,q;κ,μ)m+n(b)m(c)n(d)m(e)nxmm!ynn!|x|+|y|<1,$
respectively.

In our work, we have to recall the following fractional integral operators [13,18,19,36]. For x > 0, λ , ν, σ, ∈ ℂ and ℜ(λ ) > 0, we have

$(I0,xλ,σ,νf(t))(x)=x−λ−σΓ(λ)∫0x(x−t)λ−1F21[λ+σ,−ν;λ;1−tx]f(t)dt$
and
$(J0,∞λ,σ,νf(t))(x)=1Γ(λ)∫x∞(t−x)λ−1t−λ−σF21[λ+σ,−ν;λ;1−tx]f(t)dt$
where the 2F1[.] is the Gauss hypergeometric function [1, 4, 14, 23, 26].

The Erdelyi-Kober type fractional integral operators are defined as follows :

$(E0,xλ,νf)(x)=x−λ−νΓ(λ)∫0x(x−t)λ−1f(t)dt (ℜ(λ)>0)$
and
$(Kx,∞λ,νf)(x)=xνΓ(λ)∫x∞(t−x)λ−1t−λ−νf(t)dt (ℜ(λ)>0).$

The Riemann-Liouville fractional integral and the Weyl fractional integral operators defined as the follows [13, 18, 19, 36]:

$(R0,xλf)(x)=1Γ(λ)∫0x(x−t)λ−1f(t)dt$
and
$(Wx,∞λf)(x)=1Γ(λ)∫x∞(t−x)λ−1f(t)dt.$

In , the operator $I0,xλ,σ,ν(⋅)$ contains both the Riemann-Liouville and Erdelyi-Kober fractional integral operators by means of the following relationships:

$(R0,xλf)(x)=(I0,xλ,−λ,νf)(x)$
and
$(E0,xλ,νf)(x)=(I0,xλ,0,νf)(x)$

While the operator $I0,xλ,σ,ν(⋅)$ unifies the Weyl and Erdelyi-Kober fractional integral operators as follows :

$(Wx,∞λf)(x)=(Jx,∞λ,−λ,νf)(x)$
and
$(Kx,∞λ,νf)(x)=(Jx,∞λ,0,νf)(x).$

The following equations obtained by Kilbas  are also required for our work.

Lemma 1

Let λ , σ, ν ρ ∈ ℂ. Then, we have the following relations

$(I0,xλ,σ,νtρ−1)(x)=Γ(ρ)Γ(σ+ν−ρ)Γ(ρ−σ)Γ(λ+ν+ρ)xρ−σ−1$
and
$(J0,xλ,σ,νtρ−1)(x)=Γ(σ−ρ+1)Γ(ν−σ+1)Γ(1−ρ)Γ(λ+σ+ν−ρ+1)xρ−σ−1.$

Also, taking σ = −λ in equations (21) and (22), we have the following relations .

Lemma 2

Let λ , ρ ∈ ℂ. Then, we have the following relations

$(R0,xλtρ−1)(x)=Γ(λ)Γ(ρ+λ)xρ+λ−1$
and
$(W0,∞λtρ−1)(x)=Γ(1−λ−ρ)Γ(1−ρ+)xρ+λ−1.$
If we choose σ = 0 in the equation (21) and (22), we have the following relations.

Lemma 3

Let λ , ρ ∈ ℂ. Then, we have the following relations

$(E0,xλ,νtρ−1)(x)=Γ(ρ+ν)Γ(ρ+λ+ν)xρ−1$
and
$(Kx,∞λ,νtρ−1)(x)=Γ(1+ν−ρ)Γ(1+λ+ν−ρ)xρ−1.$

From its birth to its today’s wide use in a great number of scientific fields fractional calculus has come a long way. Despite the fact that its nearly as old as classical calculus itself, it flourished mainly over the last decades because of its good applicability on models describing complex real life problems (see. [5, 6, 28, 41]).

Here, by choosing a known generalization of the extended Gauss hypergeometric function in (7) we aim to establish certain formulas and representations for this extended Gauss hypergeometric function such as fractional derivative operators, integral transforms, fractional kinetic equations and generating functions. Also, we give some generating functions for extended Appell hypergemetric functions (9) and (10).

## 2 Fractional Calculus of (7)

In this section, we will present some fractional integral formulas for the generalization of the extended Gauss hypergeometric function $Fp,qκ,μ(a,b,c;z)$ (7) by using several general pair of fractional calculus operators.

We begin by recalling a known concept of Hadamard products [18, 19]

Definition 1

Let $f(z):=∑n=0∞anzn$ and $g(z):=∑n=0∞bnzn$ be two power series whose radii of convergence are given by Rf and Rg, respectively. Then their Hadamard product is power series defined by

$(f*g):=∑n=0∞anbnzn$
whose radius of convergence R satifies Rf. Rg≤ R.

Especially, if one of the power series defines an entire function and the radius of convergence of the grater than zero, then the Hadamard product to seperate a newly-emerged function into two known functions. For example,

$Frs+m[(a1;p,q;κ,μ),a2⋯ar;b1,b2,⋯,bs+m;z] :=F0m[−−−;b1,b2,⋯,bm;z]*Frs[(a1;p,q;κ,μ),a2⋯ar;b1+m,b2+m,⋯,bs+m;z]. (|z|<∞)$

The main results are obtained in the following theorems.

Theorem 4

Let λ , σ, ν, ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;t)](x)=xρ−σ−1Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ)Fp,qκ,μ(a,b,c;x)*F22[ρ,ρ+ν−σ;ρ−σ,λ+ν+ρ;x].$

Proof

Let’s denote the left-hand side of the equation (29) by L. Using the definition of the generalized hypergeometric function (7) and arranging order of integration and summation, which is applicable under the conditions Theorem 1, we get

$L=∑n=0∞(a;p,q;κ,μ)n(b)n(c)n⋅1n![I0,xλ,σ,νtρ+n−1](x),$
taking advantage of the (21) in the above equality (30), we have
$L=xρ−σ−1∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(ρ+n)Γ(ρ+ν−σ+n)Γ(ρ−σ+n)Γ(ρ+λ+ν+n)xnn!,$
after simplfying the equation (31), we obtain

$L=xρ−σ−1Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)∑n=0∞(a;p,q;κ,μ)n(b)n(c)n(ρ)n(ρ+ν−σ)n(ρ−σ)n(ρ+λ+ν)nxnn!,$
further comment in the view of (7), we obtain
$L=xρ−σ−1Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)F2p,q,2κ,μ(a,b,ρ,ρ+ν−σ;c,ρ−σ,ρ+λ+ν;x).$
Finally, we have the desired result (29) in consinderation of the equation (28).

Theorem 5

Let λ , σ, ν, ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[Jx,∞λ,σ,νtρ−1Fp,qκ,μ(a,b,c;1t)](x)=xρ−σ−1 ×Γ(σ−ρ+1)Γ(ν−ρ+1)Γ(1−ρ)Γ(λ+σ+ν−ρ+1)Fp,qκ,μ(a,b,c;1x) *F22[σ−ρ+1,ν−ρ+1;1−ρ,λ+σ+ν−ρ+1;1x]$

Proof

We can obtain the proof of (34) given above similar to Theorem 1.

Applying σ = 0 in the equations (29) and (34) yields some results asserted by the following corollaries.

Corollary 6

Let λ , ν, ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[E0,xλ,νtρ−1Fp,qκ,μ(a,b,c;t)](x)=xρ−1Γ(ν+ρ)Γ(λ+ν+ρ)Fp,qκ,μ(a,b,c;x)*F11[ν+ρ;λ+ν+ρ;x].$

Corollary 7

Let λ , σ, ν, ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[Kx,∞λ,νtρ−1Fp,qκ,μ(a,b,c;1t)](x)=xρ−1Γ(ν−ρ+1)Γ(λ+ν−ρ+1)Fp,qκ,μ(a,b,c;1x)*F11[ν−ρ+1;λ+ν−ρ+1;1x].$

Also, replacing σ = −λ in the equations (29) and (34), we get the following corollaries.

Corollary 8

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[R0,xλtρ−1Fp,qκ,μ(a,b,c;t)](x)=xρ+λ−1Γ(ρ)Γ(ρ+λ) Fp,qκ,μ(a,b,c;x)*F11[ρ;ρ+λ;x]$

Corollary 9

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$[Wx,∞λtρ−1Fp,qκ,μ(a,b,c;1t)](x)=xρ+λ−1Γ(1−λ−ρ)Γ(1−ρ) Fp,qκ,μ(a,b,c;1x)*F11[1−λ−ρ;1−ρ;1x]$

## 3 Integral Transforms of (7)

In this section, we prensent some integral transforms for example, Pδ transform, Laplace transform, Sumudu transform, Hankel transform and Laguerre transform for the generalization of the extended hypergeometric function (7).

### 3.1 Pδ and Related Integral Transforms

The Pδ transform of f (t) is defined as [14, 24]

$Pδ{f(t);s}=FP(s)=∫0∞[1+(δ−1)s]−tδ−1f(t)dt (δ>1),$
on condition that the convenient existence condition given by Lemma 4 below are satisfied.

Lemma 10

Let the function f(t) be integrable over any finite interval (a,b) (0 < a < t < b). Suppose also that there exists a real number c such that each of the following assertions holds true:

1. (i)For any arbitrary b > 0, $∫bιe−ctf(t)$tends to a finite limit as ι → ∞;
2. (ii)For any arbitrary a > 0, $∫εa|f(t)|dt$tends to a finite limit as ε → 0+.

Then the Pδ-transform exists whenever

$ℜ(ln[1+(δ−1)s]δ−1)>c (s∈ℂ).$

Theorem 11

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$Pδ{zυ−1[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;tz)(x)];s}=xρ−σ−1[Λ(δ;s)]υ ×Γ(υ)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ)Fp,qκ,μ(a,b,c;)x[Λ(δ;s)] *F32[υ,ρ,ρ+ν−σ;ρ−σ,λ+ν+ρ;x[Λ(δ;s)]]$
where$[Λ(δ;s)]υ=ln[1+(δ−1)]δ−1$.

Proof

Let’s denote the left-hand side given in equation (40) by 𝔓 and using the definition of the Pδ-transform (39), we get;

$𝔓=∫0∞zυ−1[1+(δ−1)s]−zδ−1(I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;tz)(x))dz,$
taking advantage of the equation (29) and arranging order of integration and summation, which is applicable under conditions Theorem 3, we have

$𝔓=xρ−σ−1∑n=0∞(a;p,q;κ,μ)n(b)n(c)nxnn! ×Γ(ρ+n)Γ(ρ+ν−σ+n)Γ(ρ−σ+n)Γ(ρ+λ+ν+n)Γ(υ+n)[Λ(δ;s)]υ+n,$
after simplfying the equation (42), we obtain
$𝔓=xρ−σ−1[Λ(δ;s)]υ Γ(υ)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)∑n=0∞(a;p,q;κ,μ)n(b)n(c)nxnn!×(ρ)n(ρ+ν−σ)n(ρ−σ)n(ρ+λ+ν)nυ)n[Λ(δ;s)]n,$
further comment in the view of (7), we have
$𝔓=xρ−σ−1[Λ(δ;s)]υΓ(υ),Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν) ×F3p,q,2κ,μ(a,b,υ,ρ,ρ+ν−σ;c,ρ−σ,ρ+λ+ν;x[Λ(δ;s)]).$
Finally, we get the required result (40) in consinderation of the equation (28).

Theorem 12

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$Pδ{zυ−1[Jx,∞λ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x):s}=xρ−σ−1xρ−σ−1[Λ(δ;s)]υ =Γ(υ)Γ(σ−ρ+1)Γ(ν−ρ+1)Γ(1−ρ)Γ(λ+σ+ν−ρ+1)Fp,qκ,μ(a,b,c;1x[Λ(δ;s)]) ×*F32[υσ−ρ+1,ν−ρ+1,ρ;1−ρ,λ+σ+ν−ρ+1;xx[Λ(δ;s)]]$

Proof

The proof of the Theorem 4 is parallel to the proof of Theorem 3

Upon letting δ → 1+ in the equation (39) is immediately reduced to the classic Laplace transform.

The Laplace transform of f (z) is defined as [14, 26, 35]:

$𝔏{f(z)}∫0∞e−szf(z)dz.$

The folowing theorem is a limit case of Theorem 3 and Theorem 4 when δ → 1+

Theorem 13

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$𝔏{zl−1[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x)}(s) =xρ−σ−1slΓ(l)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ) ×Fp,qκ,μ(a,b,c;xs)*F32[ρ,ρ+ν−σ,l;ρ−σ,λ+ν+ρ;xs].$

Proof

Let’s denote the left-hand side of the equation (47) by L. Using the definition of the Laplace transform in the above equation, we have

$L=∫0∞e−szzl−1(I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;tz)(x))dz,$
taking advantage of the equation (29) and arranging order of integration and summation, which is applicable under conditions Theorem 5, we have
$L=xρ−σ−1∑n=0∞(a;p,q;κ,μ)n(b)n(c)nxnn! ×Γ(ρ+n)Γ(ρ+ν−σ+n)Γ(ρ−σ+n)Γ(ρ+λ+ν+n)Γ(l+n)sl+n,$
after simplfying the equation (49), we obtain

$L=xρ−σ−1Γ(l)sl Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)∑n=0∞(a;p,q;κ,μ)n(b)n(c)nxnn!×(ρ)n(ρ+ν−σ)n(ρ−σ)n(ρ+λ+ν)n(l)nsn,$
further comment in the view of (7), we have

$L=xρ−σ−1Γ(l)slΓ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν) ×F3p,q,2κ,μ(a,bρ,ρ+ν−σ,l;c,ρ−σ,ρ+λ+ν;xs).$
Finally, we get the required result (47) in consinderation of the equation (28).

Theorem 14

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$𝔏{zl−1[Jx,∞λ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x)}(s) =xρ−σ−1slΓ(l)Γ(σ−ρ+1)Γ(ν−ρ+1)Γ(1−ρ)Γ(λ+σ+ν−ρ+1)Fp,qκ,μ(a,b,c;1sx) ×*F32[σ−ρ+1,ν−ρ+1,l;1−ρ,λ+σ+ν−ρ+1;1sx].$

Proof

The proof of the Theorem 6 is similar to the proof of Theorem 5.

Now, taking s = 1 in the equation (46) is related to the Sumudu transform.

The Sumudu transform of f (z) is given as follows :

$𝔖{f(z)}=∫0∞ezf(z)dz.$

The following corollaries is the special case of Theorem 5 and Theorem 6 when s = 1

Corollary 15

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ −ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$𝔖{zl−1[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x)} =xρ−σ−1Γ(l)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ) ×Fp,qκ,μ(a,b,c;x)*F32[ρ,ρ+ν−σ,l;ρ−σ,λ+ν+ρ;x].$

Corollary 16

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ −ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0, then

$𝔖{zl−1[Jx,∞λ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x)} =xρ−σ−1Γ(l)Γ(ρ−ρ+1)Γ(ν−ρ+1)Γ(1−ρ)Γ(λ+ρ+ν−ρ+1)Fp,qκ,μ(a,b,c;1x) ×*F32[σ−ρ+1,ν−ρ+1,l;1−ρ,λ+σ+ν−ρ+1;1x]$

### 3.2 Hankel transform

The Hankel transform of f (z) is given as follows [14, 24]:

$Hα{f(z)}(u)=∫0∞zJα(uz)f(z)dz,$
where Jα(z) is the first kind of Bessel function [14, 24, 35, 40].

Theorem 17

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0; $ℜ(ζ±ω)>−12$, then

$Hα{zβ−1[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;z2)](x)}(u) =12(2u)βΓ(α+β2)Γ(1+α−β2)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ) ×Fp,qκ,μ(a,b,c;−4xu2)*F33[ρ,ρ+ν−σ,α+β2; ρ−σ,λ+ν+ρ,1+α−β2;4xu2]$

Proof

Let’s denote the left-hand side of the equation (57) by H. Using the definition of the Whittaker transform in the above equation, we have

$H=xρ−σ−1Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)∑n=0∞(a;p,q;κ,μ)n(b)n(c)n ×(ρ)n(ρ+ν−σ)n(ρ−σ)n(ρ+λ+ν)nxnn!∫0∞zβ+2n−1Jν(αz)dz,$
Now, applying well-knowns formula for power function including Bessel function [14, 24],
$∫0∞zβ−1Jα(uz)dz=2β−1u−βΓ(α+β2)Γ(1+α−β2),$
after simplfying equation (59) and using the definition of (7), we obtain
$H=xρ−σ−12(2u)βΓ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)Γ(α+β2)Γ(1+α−β2) ×F3p,q,3κ,μ(a,bρ,ρ+ν−σ,α+β2;c,ρ−σ,ρ+λ+ν,1+α−β2;4xu2).$
Finally, we get the required result (57) in consinderation of the equation (28).

Theorem 18

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0; $ℜ(ζ±ω)>−12$ , then

$Hα{zβ−1[Jx,0λ,σ,νtρ−1Fp,qκ,μ(a,b,c;z2t)](x)}(u) =12(2u)βΓ(α+β2)Γ(1+α−β2)Γ(σ−ρ+1)Γ(ν−ρ+1)Γ(ρ−σ)Γ(λ+ν+σ) ×Fp,qκ,μ(a,b,c;−4xxu2)*F33[σ−ρ+1,ν−ρ+1,α+β2; ρ−σ,λ+ν+σ+α−β2;4xxu2]$

Proof

The proof of the Theorem 8 is similar to the proof of Theorem 7.

### 3.3 Laguerre Transform

The Laguerre transform of f (z) is given as follows [14, 24]:

$ℒ(α){f(z);(m)}=∫0∞e−zzαLmα(z)f(z)dz,$
where $Lmα(z)$ is the Laguerre polynomial [14, 24, 35].

Theorem 19

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0; $ℜ(ζ±ω)>−12$ , then

$ℒ(α){zβ−1[I0,xλ,σ,νtρ−1Fp,qκ,μ(a,b,c;tz)](x)} =Γ(α+β)Γ(2−β)Γ(1−β)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ) ×Fp,qκ,μ(a,b,c;x)*F32[α+β,ρ,ρ+ν−σ; ρ−σ,λ+ν+ρ;x]$

Proof

Let’s denote the left-hand side of the equation (63) by M. Using the definition of the Laguerre transform in the above equation, we have

$M=xρ−σ−1Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(ρ+λ+ν)∑n=0∞(a;p,q;κ,μ)n(b)n(c)n ×(ρ)n(ρ+ν−σ)n(ρ−σ)n(ρ+λ+ν)nxnn!∫0∞ezzα+β+n−1Lmα(z)dz,$

Now, applying well-knowns integral formula for power function including Laguerre polynomial [14, 24],

$∫0∞ezzβ−1zα+β+n−1Lmα(z)dz=Γ(α+β+n)Γ(m−β+1)m!Γ(1−β),$
after simplfying equation (65) and using the definition of (7), we obtain

$M=Γ(α+β)Γ(2−β)Γ(1−β)Γ(ρ)Γ(ρ+ν−σ)Γ(ρ−σ)Γ(λ+ν+ρ) ×F3p,q,2κ,μ(a,b,α+β,ρ,ρ+ν−σ;c,ρ−σ,ρ+λ+ν;x).$
Finally, we get the required result (63) in consinderation of the equation (28).

Theorem 20

Let λ , ρ ∈be such that ℜ(λ ) > 0, ℜ(ρ) > max[0,ℜ(σ − ν)]; min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0};ℜ(c) > ℜ(b) > 0; $ℜ(ζ±ω)>−12$ , then

$ℒ(α){zβ−1[Jx,0λ,σ,νtρ−1Fp,qκ,μ(a,b,c;zt)](x)} =Γ(α+β)Γ(2−β)Γ(1−β)Γ(σ−ρ+1)Γ(ν−ρ+1)Γ(ρ−σ)Γ(λ+ν+ρ) ×Fp,qκ,μ(a,b,c;−1x)*F32[σ−ρ+1,ν−ρ+1,; ρ−σ,λ+ν+σ;1x]$

Proof

The proof of the Theorem 10 is similar to the proof of Theorem 9.

## 4 Generating functions of (7), (9) and (10)

In this section, we will present certain generating functions involving new generalization of extended Gauss hypergeometric function and extended Appell hypergeometric functions.

Theorem 21

The following generating function for (7) holds true:

$∑n=0∞(α+n−1n)Fp,qκ,μ(a,b;1−α−n,c;z)ωn=(1−ω)α ×Fp,qκ,μ(a,b;1−α,c;z(1−ω))$

Proof

Let’s obtain the left hand side of the equation (68) by S. Then, by applting the series expression from (7) into S, we have that

$S=∑n=0∞(α+n−1n)[∑k=0∞(a;p,q;κ,μ)k(b)k(1−α−n)k⋅zkk!]ωn,$
which, upon arranging the order of summation and after some changing, gives
$S=∑k=0∞(a;p,q;κ,μ)k(b)k(1−α)k[∑n=0∞(α+n+k−1n)ωn]zkk!.$
Finally, applying the following generalized binomial expression [34, 35]:
$∑n=0∞(α+n−1n)tn=(1−t)n(|t|<1;α∈ℂ),$
for calculating the inner sum in (70), we obtain the required result (68).

Theorem 22

The following generating function for (7) holds true:

$∑n=0∞(α)nn!Fp,qκ,μ(a,α+n;c;z)ωn=(1−ω)−αFp,qκ,μ(a,α;c;z1−w).$

Proof

The proof of the Theorem 12 is same as the proof of Theorem 1.

Theorem 23

The following generating function for (9) holds true:

$∑k=0∞(α)kn!Fp,q1κ,μ[a,α+k,c;d;x,y]ωk=(1−ω)−αFp,q1κ,μ[a,α;c;d;x1−ω,y].$

Proof

Let N be the left side of (73), using the (9) and interchanging the order of summations, we have that

$N=∑m,n=0∞∑k=0∞(α)k(α+k)m(a;p,q;κ,μ)m+n(c)n(d)m+nxmm!ynn!.$
Applying the equation (71) in the equation (74), we can be easily seen to lead to right-hand side of (73).

Theorem 24

The following generating function for (10) holds true:

$∑k=0∞(α)kn!Fp,q2κ,μ[a,α+k,c;d,e;x,y]ωk=(1−ω)−αFp,q2κ,μ[a,α;c;d,e;x1−ω,y].$

Proof

The proof of the Theorem 14 is same as the proof of Theorem 13.

## 5 Fractional Differential Equations

The importance of the fractional differential equations in the field of applied sciences gained more attention not in mathematics but also in physics, dynamical systems, control systems and engineering, to create the mathematical model of physical phenomena. Specially, the kinetic equations describe the contiunity of motion of substance. The extension and generalisation of fractional kinetic equations involving many fractional operators were found in [2, 3, 9, 11, 12, 15, 31, 32, 33].

The fractional differential equation between rate of change of the reaction, the destruction rate and the production rate was established by Haubold and Mathai  given as follows:

$dNdt=−d(Nt)+p(Nt)$
where N = N(t) the rate of the reaction, d = d(N) the rate of destruction, p = p(N) the rate of production and Nt denotes the function defined by Nt(t) = N(t − t),t > 0.

The special case of equation (76) for spatial fluctuations and inhomogeneities in N(t) the quantities are neglected, that is the equation

$dNdt=−ciNi(t)$
with the initial condition that Ni(t = 0) = N0 is the number of density of the species i at time t = 0 and ci > 0. If we shift the index i and integrate the standard kinetic equation (77), we have
$N(t)−N0=−c0Dt−1N(t)$
where $0Dt−1$ is the special case of the Riemann-Liouville integral operator $0Dt−V$ given as
$D0t−νf(t)=1Γ(ν)∫0t(t−s)ν−1f(s)ds, (t>0,ℜ(ν)>0.)$

The fractional generalisation of the standart kinetic equation (78) is given by Haubold and Mathai as follows [31, 32]:

$N(t)−N0=−cνD0t−1N(t)$
and obtained the solution of (77) as follows:
$N(t)=N0∑k=0∞(−1k)Γ(νk+1)(ct)νk.$

Furthermore, Saxena and Kalla  considered the following fractional kinetic equation:

$N(t)−N0f(t)=−cνD0t−1N(t)(ℜ(ν)>0),$
where N(t) denotes the number density of a given species at time t, N0 = N(0) is the number of density of that species at time t = 0, c is a constant and f ∈ L(0,∞).

By applying the Laplace transform (46) to the equation (82),

$𝔏{N(t);p}=N0F(p)1+cνp−ν=N0(∑n=0∞(−cν)np−νn)F(p),(n∈N0,|cp|<1).$

### 5.1 Solution of the generalised fractional kinetic equations

In this section, we will present the solution of the generalised fractional kinetic equations which by considering generalised Gauss hypergeometric function (7).

Theorem 25

If d > 0, ν > 0; p,q,κ, μ,a,b,c,δ ∈be such that ℜ(c) > ℜ(b) > 0;min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0}, then the solution of the following fractional equation

$N(t)−N0Fp,qκ,μ(a,b,c;dνtν)=−δνD0t−νN(t)$
is given by
$N(t)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dνtν)nn!Eν,νn+1(−δνtν)$
where Eν,νn+1(−δ νtν) is the Mittag-Leffler function .

Proof

The Laplace transform of the Riemann-Liouville fractional integral operator is defined by [14, 36]:

$𝔏{D0t−νf(t);s}=s−νF(s)$
where F(p) is given in (46). Now, applying the Laplace transform to the both sides of (84), we obtain

$𝔏{N(t);s}=N0𝔏{Fp,qκ,μ(a,b,c;dνtν);s}−δν𝔏{D0t−νN(t);s}N(s)=N0(∫0∞e−st∑n=0∞(a;p,q;κ,μ)n(b)n(c)n(dνtν)nn!)−δνs−νN(s)N(s)+δνs−νN(s)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)n(dν)nn!∫0∞e−sttνndt=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)n(dν)n!Γ(νn+1)sνn+1N(s)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dν)nn!s−(νn+1)∑r=0∞[−(sδ)−ν]r$

The inverse Laplace transform of (87) is given by [14, 24, 36]

$𝔏−1{s−ν;t}=tν−1Γ(ν),(ℜ(ν)>0),$
we get
$L−1{N(s)}=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dν)nn!L−1{s−(νn+1)∑r=0∞[−(sδ)−ν]r}N(t)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dνtν)nn![∑r=0∞(−1)rδνrtνrΓ(νn+νr+1)]N(t)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dνtν)nn!Eν,νn+1(−δνtν).$

So, we can be yield the required result (84).

Theorem 26

If d > 0, ν > 0; p,q,κ, μ,a,b,c,δ ∈be such that ℜ(c) > ℜ(b) > 0;min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0}, then the solution of the following fractional equation:

$N(t)−N0Fp,qκ,μ(a,b,c;dνtν)=−dνD0t−vN(t)$
is given by
$N(t)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(νn+1)(dνtν)nn!Eν,νn+1(−dνtν).$

Proof

Choosing δ = d in equation (84), we can be easily yield the desired result (90).

Theorem 27

If d > 0; p,q,κ, μ,a,b,c,δ ∈be such that ℜ(c) > ℜ(b) > 0;min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0}, then the solution of the following fractional equation

$N(t)−N0Fp,qκ,μ(a,b,c;t)=−δD0t−1N(t)$
is given by
$N(t)=N0∑n=0∞(a;p,q;κ,μ)n(b)n(c)nΓ(n+2)(t)nn!E1,n+2(−δt).$

Proof

Choosing ν = d = 1 in equation (84), we can be easily yield the desired result (90).

Corollary 28

If d > 0; p,q,κ, μ,a,b,c,δ ∈be such that ℜ(c) > ℜ(b) > 0;min{ℜ(p),ℜ(q),ℜ(κ),ℜ(μ) > 0}, then the solution of the following fractional equation

$N(t)−N0Fp,qκ,μ(a,b,c;t)=−δD0t−1N(t)$
is given by
$N(t)=N0−∑n=0∞(a;p,q;κ,μ)n(b)n(c)n(n+1)(t)n−1δE1,n+1(−δt) +1δtFp,qκ,μ(a,b,c;t)+a.bc.δFp,qκ,μ(a+1,b+1,c+1;t).$

Proof

Applying the above Mittag-Leffler function properties [14, 24]

$Eα,β(z)=1zEα,β−α(z)−1zΓ(β−α),$
in the equation (93). Then, making some simple arrangment, we can be easily yield the desired result (95)

## 6 Conclusions

We may also give point to that results obtained in this work are of general character and can appropriate to give farther interesting and potentially practical formulas involving integral transform, fractional calculus and generating functions. Also we give a new fractional generalization of the standard kinetic equation and obtained solution for the same. From the close relationship of family of extended generalized Gauss hypergeometric functions with many special functions, we can easily construct various known and new fractional kinetic equations.

Acknowledgments

Authors would like to thank reviewers for careful reading of the manuscript and their valuable comments and suggestions for the betterment of the present paper.

## References

• 

M. Abramowitz and I.A. Stegun (eds.). (1965), Handbook of Mathematical Functions with Formulas, Graphs, and-Mathematical Tables, Applied Mathematics Series 55, Tenth Printing, National Bureau of Standards, Washington, DC, 1972; Reprinted by Dover Publications, New York.

• 

P. Agarwal, M. Chand, and G. Singh. (2016), Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal 55.4 3053–3059.

• 

P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh. (2018), Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria engineering journal, 57(3): 1937–1942.

• 

G.E. Andrews, R. Askey, R. Roy. (1999), Special Functions, Encyclopedia of Mathematics and Its Applications, Vol. 71, Cambridge University Press, Cambridge, London and New York.

• 

H. M. Baskonus, H. Bulut, T. A. Sulaiman. (2019), New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method, Applied Mathematics and Nonlinear Sciences, 4(1): 141–150.

• 

T. Caraballo, M. Herrera-Cobos, P. Martin-Rubio. (2017), An iterative method for non-autonomous nonlocal reaction-diffusion equations, Applied Mathematics and Nonlinear Sciences, 2(1): 73–82.

• 

M. A. Chaudhry, A. Qadir H. M. Srivastava. (2004), Extended hypergeometric and confluent hypergeometric functions. Applied Mathematics and Computation, 159(2): 589–602..

• 

M. A. Chaudhry, A. Qadir , M. Raque , S. M. Zubair. (1997), Extension of Euler’s Beta function. J. Compt. Appl. Math. 78: 19–32.

• 

M. A. Chaudhry, S. M. Zubair. ( 2002), On a class of incomplete Gamma with Applications. CRC Press (Chapman and Hall), Boca Raton, FL.

• 

J. Choi, A.K. Rathie , R.K. Parmar. (2014), Extension of extended beta, hypergeometric and confluent hypergeometric functions. Honam Mathematical Journal 33: 357–385.

• 

A. Chouhan, S. Sarswat. (2012), On solution of generalized Kinetic equation of fractional order, Int. Jr. of Mathematical Sciences and Applications 2.2 813–818.

• 

A. Chouhan, S. D. Purohit, S. Sarswat. (2013), An alternative method for solving generalized differential equations of fractional order, Kragujevac J Math 37: 299–306.

• 

A. Çetinkaya, İ. O. Kıymaz, P. Agarwal, R. Agarwal. (2018), A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators, Advances in Difference Equations, 2018(1): 156.

• 

A. Erdélyi, W. Mangus, F. Oberhettinger, F.G. Tricomi. (1953), Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London.

• 

H. J. Haubold, M. Mathai. (2000), The fractional kinetic equation and thermonuclear functions, Astrophysics and Space Science 273.1–4: 53–63.

• 

İ. O. Kıymaz, A. Çetinkaya, P. Agarwal. (2016), An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl, 9: 3611–3621.

• 

İ. O. Kıymaz, P. Agarwal, S. Jain, A. Çetinkaya. (2017), On a new extension of Caputo fractional derivative operator, In Advances in Real and Complex Analysis with Applications (pp. 261–275). Birkhauser, Singapore.

• 

A. A. Kilbas, N. Sebastian. (2008), Generalized fractional integration of Bessel function of the first kind. Integral Transforms and Special Functions, 19(12): 869–883.

• 

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. (2006), Theory and applications of fractional differential equations. Vol. 204. Elsevier Science Limited.

• 

H. Kober. (1940), On fractional integrals and derivatives, The Quarterly Journal of Mathematics 1: 193–211.

• 

D. Lee , A. K. Rathie , R. K. Parmar , Y. S. Kim. (2011), Generalization of extended beta function, hypergeometric and confluent hypergeometric functions. Honam Mathematical Journal 33: 187–206.

• 

M. J. Luo , G. V. Milovanovic , P. Agarwal. (2014), Some results on the extended beta and extended hypergeometric functions. Applied Mathematics Comp. 248: 631–651.

• 

W. Magnus, F. Oberhettinger, R.P. Soni. (1966), Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged Edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, vol. 52, Springer-Verlag, Berlin, Heidelberg and New York.

• 

A. M. Mathai, R. K. Saxena, H. J. Haubold. (2009), The H-function: theory and applications, Springer Science Business Media.

• 

G. M. Mittag-Leffler. (1903), Sur la nouvelle fonction E (x), CR Acad. Sci. Paris 137.2 554–558.

• 

F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds). (2010), NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)], U.S. Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010; Cambridge University Press, Cambridge, London and New York, (see also AS).

• 

E. Özergin, M. A. Özarslan, A. Altın. (2011), Extension of Gamma, beta and hypergeometric functions. Journal of Comp. and Applied Math. 235: 4601–4610.

• 

P. K. Pandey, (2018). Solution of two point boundary value problems, a numerical approach: parametric difference method, Applied Mathematics and Nonlinear Sciences, 3(2): 649–658.

• 

R. K. Parmar. (2013), A new generalization of Gamma, Beta, hypergeometric and Confluent Hypergeometric functions. Le Mathematiche 68: 33–52.

• 

E.D. Rainville. (1971), Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea publishing Company, Bronx, New York.

• 

R. K. Saxena, A. M. Mathai, H. J. Haubold. (2002), On fractional kinetic equations, Astrophysics and Space Science 282.1, 281–287.

• 

R. K. Saxena, A. M. Mathai, H. J. Haubold. (2004), On generalized fractional kinetic equations, Physica A: Statistical Mechanics and its Applications 344.3–4, 657–664.

• 

R. K. Saxena, S. L. Kalla. (2008), On the solutions of certain fractional kinetic equations, Applied Mathematics and Computation 199.2, 504–511.

• 

H. M. Srivastava, A. Çetinkaya, İ. O. Kıymaz. (2014), A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Applied Mathematics and Computation 226: 484–491.

• 

H.M. Srivastava, H.L. Manocha. (1984), A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto.

• 

H.M. Srivastava, R. K. Saxena. (2001), Operators of fractional integration and their applications. Applied Mathematics and Computation 118(1): 1–52.

• 

R. Şahin , O. Yağcı , M. B. Yağbasan , A. Çetinkaya , İ. O. Kıymaz. (2018), Further Generalizations of Gamma, Beta and Related Functions. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS 9: 1–7.

• 

R. Şahin , O. Yağcı , A New Generalization of Pochhammer Symbol and Its Applications. submitted.

• 

G. K. Watugala. (1998), Sumudu Transform a new integral transform to solve differential equations and control engineering problems.

• 

G.N. Watson. (1944), A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York.

• 

A. Yoku¸s, S. Gülbahar. (2019), Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation, Applied Mathematics and Nonlinear Sciences, 4(1): 35–42.

If the inline PDF is not rendering correctly, you can download the PDF file here.

• 

M. Abramowitz and I.A. Stegun (eds.). (1965), Handbook of Mathematical Functions with Formulas, Graphs, and-Mathematical Tables, Applied Mathematics Series 55, Tenth Printing, National Bureau of Standards, Washington, DC, 1972; Reprinted by Dover Publications, New York.

• 

P. Agarwal, M. Chand, and G. Singh. (2016), Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal 55.4 3053–3059.

• 

P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh. (2018), Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria engineering journal, 57(3): 1937–1942.

• 

G.E. Andrews, R. Askey, R. Roy. (1999), Special Functions, Encyclopedia of Mathematics and Its Applications, Vol. 71, Cambridge University Press, Cambridge, London and New York.

• 

H. M. Baskonus, H. Bulut, T. A. Sulaiman. (2019), New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method, Applied Mathematics and Nonlinear Sciences, 4(1): 141–150.

• 

T. Caraballo, M. Herrera-Cobos, P. Martin-Rubio. (2017), An iterative method for non-autonomous nonlocal reaction-diffusion equations, Applied Mathematics and Nonlinear Sciences, 2(1): 73–82.

• 

M. A. Chaudhry, A. Qadir H. M. Srivastava. (2004), Extended hypergeometric and confluent hypergeometric functions. Applied Mathematics and Computation, 159(2): 589–602..

• 

M. A. Chaudhry, A. Qadir , M. Raque , S. M. Zubair. (1997), Extension of Euler’s Beta function. J. Compt. Appl. Math. 78: 19–32.

• 

M. A. Chaudhry, S. M. Zubair. ( 2002), On a class of incomplete Gamma with Applications. CRC Press (Chapman and Hall), Boca Raton, FL.

• 

J. Choi, A.K. Rathie , R.K. Parmar. (2014), Extension of extended beta, hypergeometric and confluent hypergeometric functions. Honam Mathematical Journal 33: 357–385.

• 

A. Chouhan, S. Sarswat. (2012), On solution of generalized Kinetic equation of fractional order, Int. Jr. of Mathematical Sciences and Applications 2.2 813–818.

• 

A. Chouhan, S. D. Purohit, S. Sarswat. (2013), An alternative method for solving generalized differential equations of fractional order, Kragujevac J Math 37: 299–306.

• 

A. Çetinkaya, İ. O. Kıymaz, P. Agarwal, R. Agarwal. (2018), A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators, Advances in Difference Equations, 2018(1): 156.

• 

A. Erdélyi, W. Mangus, F. Oberhettinger, F.G. Tricomi. (1953), Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London.

• 

H. J. Haubold, M. Mathai. (2000), The fractional kinetic equation and thermonuclear functions, Astrophysics and Space Science 273.1–4: 53–63.

• 

İ. O. Kıymaz, A. Çetinkaya, P. Agarwal. (2016), An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl, 9: 3611–3621.

• 

İ. O. Kıymaz, P. Agarwal, S. Jain, A. Çetinkaya. (2017), On a new extension of Caputo fractional derivative operator, In Advances in Real and Complex Analysis with Applications (pp. 261–275). Birkhauser, Singapore.

• 

A. A. Kilbas, N. Sebastian. (2008), Generalized fractional integration of Bessel function of the first kind. Integral Transforms and Special Functions, 19(12): 869–883.

• 

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. (2006), Theory and applications of fractional differential equations. Vol. 204. Elsevier Science Limited.

• 

H. Kober. (1940), On fractional integrals and derivatives, The Quarterly Journal of Mathematics 1: 193–211.

• 

D. Lee , A. K. Rathie , R. K. Parmar , Y. S. Kim. (2011), Generalization of extended beta function, hypergeometric and confluent hypergeometric functions. Honam Mathematical Journal 33: 187–206.

• 

M. J. Luo , G. V. Milovanovic , P. Agarwal. (2014), Some results on the extended beta and extended hypergeometric functions. Applied Mathematics Comp. 248: 631–651.

• 

W. Magnus, F. Oberhettinger, R.P. Soni. (1966), Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged Edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, vol. 52, Springer-Verlag, Berlin, Heidelberg and New York.

• 

A. M. Mathai, R. K. Saxena, H. J. Haubold. (2009), The H-function: theory and applications, Springer Science Business Media.

• 

G. M. Mittag-Leffler. (1903), Sur la nouvelle fonction E (x), CR Acad. Sci. Paris 137.2 554–558.

• 

F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds). (2010), NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)], U.S. Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010; Cambridge University Press, Cambridge, London and New York, (see also AS).

• 

E. Özergin, M. A. Özarslan, A. Altın. (2011), Extension of Gamma, beta and hypergeometric functions. Journal of Comp. and Applied Math. 235: 4601–4610.

• 

P. K. Pandey, (2018). Solution of two point boundary value problems, a numerical approach: parametric difference method, Applied Mathematics and Nonlinear Sciences, 3(2): 649–658.

• 

R. K. Parmar. (2013), A new generalization of Gamma, Beta, hypergeometric and Confluent Hypergeometric functions. Le Mathematiche 68: 33–52.

• 

E.D. Rainville. (1971), Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea publishing Company, Bronx, New York.

• 

R. K. Saxena, A. M. Mathai, H. J. Haubold. (2002), On fractional kinetic equations, Astrophysics and Space Science 282.1, 281–287.

• 

R. K. Saxena, A. M. Mathai, H. J. Haubold. (2004), On generalized fractional kinetic equations, Physica A: Statistical Mechanics and its Applications 344.3–4, 657–664.

• 

R. K. Saxena, S. L. Kalla. (2008), On the solutions of certain fractional kinetic equations, Applied Mathematics and Computation 199.2, 504–511.

• 

H. M. Srivastava, A. Çetinkaya, İ. O. Kıymaz. (2014), A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Applied Mathematics and Computation 226: 484–491.

• 

H.M. Srivastava, H.L. Manocha. (1984), A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto.

• 

H.M. Srivastava, R. K. Saxena. (2001), Operators of fractional integration and their applications. Applied Mathematics and Computation 118(1): 1–52.

• 

R. Şahin , O. Yağcı , M. B. Yağbasan , A. Çetinkaya , İ. O. Kıymaz. (2018), Further Generalizations of Gamma, Beta and Related Functions. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS 9: 1–7.

• 

R. Şahin , O. Yağcı , A New Generalization of Pochhammer Symbol and Its Applications. submitted.

• 

G. K. Watugala. (1998), Sumudu Transform a new integral transform to solve differential equations and control engineering problems.

• 

G.N. Watson. (1944), A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York.

• 

A. Yoku¸s, S. Gülbahar. (2019), Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation, Applied Mathematics and Nonlinear Sciences, 4(1): 35–42.

OPEN ACCESS

### Search   