Prodrug Strategy in Drug Development


Prodrugs are chemically modified derivatives introduced in therapy due to their advantageous physico-chemical properties (greater stability, improved solubility, increased permeability), used in inactive form. Biological effect is exerted by the active derivatives formed in organism through chemical transformation (biotransformation). Currently, 10% of pharmaceutical products are used as prodrugs, nearly half of them being converted to active form by hydrolysis, mainly by ester hydrolysis. The use of prodrugs aims to improve the bioavailability of compounds in order to resolve some unfavorable characteristics and to reduce first-pass metabolism. Other objectives are to increase drug absorption, to extend duration of action or to achieve a better tissue/organ selective transport in case of non-oral drug delivery forms. Prodrugs can be characterized by chemical structure, activation mechanism or through the presence of certain functional groups suitable for their preparation. Currently we distinguish in therapy traditional prodrugs prepared by chemical derivatisation, bioprecursors and targeted delivery systems. The present article is a review regarding the introduction and applications of prodrug design in various areas of drug development.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Testa B, Mayer JB. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry and Enzymology, Wiley-VCH, 2003.

  • 2. Ettmayer P, Amidon GL, Clement B et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47(10):2393-2240.

  • 3. Testa B. Prodrug research: futile or fertile. Biochem Pharmacol. 2004;68(11):2097-2106.

  • 4. Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255-270.

  • 5. Rautio J, Laine K, Gynther M, et al. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92-102.

  • 6. Jilani JA, Idkaidek NM, Alzoubi KH. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug. Pharmaceuticals (Basel). 2014;7(4):453-63.

  • 7. Wohl AR, Michel AR, Kalscheuer S, et al. Silicat esters of paclitaxel and docetaxel: synthesis, hydrophobicity, hydrolytic stability, cytotoxicity, andprodrug potential. J Med Chem. 2014;57(6):2368-2379.

  • 8. Liu KS, Hsieh PW, Aljuffali IA, et al. Impact of ester promoieties on transdermal delivery of ketorolac. J Pharm Sci. 2014;103(3):974-986.

  • 9. Diez-Torrubia A, Cabrera S, de Castro S, et al. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme. Eur J Med Chem. 2013;70:456-468.

  • 10. Lai L, Xu Z, Zhou J, et al. Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase. J Biol Chem. 2008;283(14):9318-9327.

  • 11. Rautio J, Mannhold R, Kubinyi H, Folkers G. Prodrugs and Targeted Delivery: Towards Better ADME Properties, Volume 47, Wiley-VCH Verlag Gmbh & Co KGA, Weinheim, 2011.

  • 12. Chiodo F, Marradi M, Calvo J, et al. Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem. 2014;10:1339-1346.

  • 13. Vivekkumar K Redasani, Sanjay B. Bari. Prodrug Design: Perspectives, Approaches and Applications. Elsevier London, 2015.

  • 14. Albert A. Chemical aspects of selective toxicity. Nature. 1958;182:421-422.

  • 15. Wermuth CG, Ganellin CR, Lindberg P, et al. “Glossaryis of terms used in medicinal chemistry (IUPAC Recommendations 1998)”. Pure and Applied Chemistry. 1998;70(5):1129.

  • 16. N’Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19(12):20780-20807.

  • 17. Forde E, Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules. 2015;20(1):1210-1227.

  • 18. Wermuth CG, Aldous D, Raboisson P, et al. The practice of Medicinal Chemistry, fourth edition, Academic Press, London, 2015;657-692.

  • 19. Vert M, Doi Y, Hellwich K, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)”. Pure and Applied Chemistry 2012;84(2):377-410.

  • 20. Das N, Dhanawat M, Dash M. Codrug: An efficient approach for drug optimization. Eur J of Pharm Sci. 2010;41:571-588.

  • 21. Leppänen J, Huuskonen J, Nevalainen T, et al. Design and synthesis of a novel L-dopa-entacapone codrug. Med Chem. 2002;45(6):1379-1382.

  • 22. Bodor N, Buchwald P. Soft drug design: General principles and recent applications. Medicinal Research Reviews. 2000;20(1):58-101.

  • 23. Takácsné Novák K. A prodrug stratégia a gyógyszerkutatásban: bevált módszerek és új irányok. Gyógyszerészet. 2013;57:451-459.

  • 24. Keserű GyM. A gyógyszerkutatás kémiája. Akadémiai Kiadó, Budapest, 2011;539-564.

  • 25. Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65(1):1-14.

  • 26. Stella VJ. Prodrugs: some thoughts and current issues. J Pharm Sci. 2010;99:4755-4765.

  • 27. Stella VJ, Burchardt RT, Hageman MJ, et al. Prodrugs: Challenges and Rewards. Part 1. Springer, New York, 2007.

  • 28. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677-694.

  • 29. Kokil GR, Rewatkar PV. Bioprecursor prodrugs: molecular modification of the active principle. Mini Rev Med Chem. 2010;10:1316-1330.

  • 30. Wu KM. A new classification of prodrugs: regulatory perspective. Pharmaceuticals. 2009;2:77-81.

  • 31. Wu KM, Farrelly J. Regulatory perspectives of type II prodrug development and time-dependent toxicity management: Nonclinical pharm/tox analysis and the role of comparative toxicology. Toxicology. 2007;236:1-6.

  • 32. Balendiran GK, Rath N, Kotheimer A. Biomolecular chemistry of isopropyl fibrates. J Pharm Sci. 2012;101(4):1555-1569.

  • 33. Lesniewska MA, Ostrowski T, Zeidler J, et al. Ester groups as carriers of antivirally active tricyclic analogue of acyclovir in prodrugs designing: synthesis, lipophilicity-comparative statistical study of the chromatographic and theoretical methods, validation of the HPLC method. Comb Chem High Throughput Screen. 2014;17(7):639-650.

  • 34. Chanteux H, Rosa M, Delatour C, et al. In vitro hydrolysis and transesterification of CDP323, an α4β1/α4β7 integrin antagonist ester prodrug. Drug Metab Dispos. 2014;42(1):153-161.

  • 35. Swaan PW, Stehouwer MC, Tukker JJ. Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat and lisinopril. Biochim Biophys Acta. 1995;1236(1):31-38.

  • 36. Liu KS, Hsieh PW, Aljuffali IA, et al. Impact of ester promoieties on transdermal delivery of ketorolac. J Pharm Sci. 2014;103(3):974-986.

  • 37. Karaman R. Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model. 2012;18(4):1523-1540.

  • 38. Wang H, Xie H, Wu J, et al. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angew Chem Int Ed. 2014;53(43):11532-11537.

  • 39. Lang BC, Yang J, Wang Y, et al. An improved design of water-soluble propofol prodrugs characterized by rapid onset of action. Anesth Analg. 2014;118(4):745-754.

  • 40. Wozniak KM, Vornov JJ, Mistry BM. Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers. J Transl Med. 2015;13:170.

  • 41. Sharma SK, Bagshawe KD. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Springer 2010;393-405.

  • 42. Tietze L, Krewer B. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies. Chem Biol Drug Des. 2009;74:205-211.

  • 43. Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs II: the prodrug strategy. Drug Discovery Today. 2013;18(1-2):93-98.

  • 44. Tietze LF, Krewer B. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies. Chem Biol Drug Des. 2009;74:205-211.

  • 45. Schmoll HJ, Twelves C, Sun W, et al. Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III coloncancer and the effect of oxaliplatin on post-relapse survival: a pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol. 2014;15(13):1481-1492.

  • 46. Loke J, Khan JN, Wilson JS, et al. Mylotarg has potent anti-leukaemic effect: a systematic review and meta-analysis of anti-CD33 antibody treatment in acute myeloid leukaemia. Ann Hematol. 2015;94(3):361-373.

  • 47. Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021-3032.

  • 48. Rowe JM, Löwenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838-4841.

  • 49. Singh Y, Palombo M, Sinko PJ. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design. Curr Med Chem. 2008;15(18):1802-1826.

  • 50. Aloysius H, Hu L. Targeted prodrug approaches for hormone refractory prostate cancer. Med Res Rev. 2015;35(3):554-585.

  • 51. Schellmann N, Deckert PM, Bachran D, et al. Targeted enzyme prodrug therapies. Mini Rev Med Chem. 2010;10:887-904.

  • 52. Osipovitch DC, Parker AS, Makokha CD, et al. Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng Des Sel. 2012;25(10):613-623.

  • 53. Zhou X, Wang H, Shi P, et al. Characterization of a fusion protein of RGD4C and the β-lactamase variant for antibody-directed enzyme prodrug therapy. Onco Targets Ther. 2014;7:535-541.

  • 54. Zhang J, Kale V, Chen M. Gene-directed enzyme prodrug therapy. AAPS J. 2015;17(1):102-110.


Journal + Issues