Snake Venom Metalloproteinases

Open access

Abstract

As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. http://www.outsideonline.com/1912971/venom-not-just-poison

  • 2. http://www.wondersandmarvels.com/2011/11/the-uses-of-snakevenom-in-antiquity.html

  • 3. Kang TS Georgieva D Kini RM et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278(23):4544-4476.

  • 4. Mitchell SW Reichert ET. Researches upon the venoms of poisonous serpents.Smithsonian Contribution to Knowledge Smithsonian Institute Washington D.C. 1886;pp.89-95.

  • 5. Markland Jr. FS Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3-18.

  • 6. Ohsaka A. Fractionation of Habu snake venom by chromatography on cm-cellulose with special reference to biological activities. Jpn J Med Sci Biol. 1960;13:199-205.

  • 7. Ohsaka A Ikezawa H Kondo H Kondo S. Two hemorrhagic principles derived from Habu snake venom and their difference in zone electrophoretical mobility. Jpn J Med Sci Biol. 1960;13:73-76.

  • 8. Okonogi T Hoshi S Honma M et al. Studies on the habu snake venom. 3-2. A comparative study of histopathological changes caused by crude venom purified habu-proteinase and other proteinases. Jpn J Microbiol. 1960;4:189-192.

  • 9. Maeno H Mitsuhashi S Sato R. Studies on Habu snake venom. 2c. Studies on Hβ-proteinase of Habu venom.Jpn J Microbiol. 1960;4:173-180.

  • 10. Bjarnason JB Tu AT. Hemorrhagic toxins from western diamondback rattlesnake (Crotalus atrox) venom: isolation and characterization of five toxins and the role of zinc in hemorrhagic toxin e. Biochemistry. 1978;17(16):3395-3404.

  • 11. Takahashi T Ohsaka A. Purification and some properties of two hemorrhagic principles (HR2a and HR2b) in the venom of Trimeresurus flavoviridis; complete separation of the principles from proteolytic activity. Biochim Biophys Acta. 1970;207(1):65-75.

  • 12. Takeda S Takeya H Iwanaga S. Snake venom metalloproteinase: structure function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta. 2012;1824(1):164-176.

  • 13. Fox JW Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275:3016-3030.

  • 14. Shannon JD Baramovat EN Bjarnason JB Fox JW. Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J Biol Chem. 1989;264(20):11575-11583.

  • 15. Bjarnason JB Fox JW. Snake venom metalloendopeptidases: Reprolysins. Methods Enzymol. 1995;248:345-368.

  • 16. Bjarnason JB Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325-372.

  • 17. Hite LA Shannon JD Bjarnason JB Fox JW. Sequence of cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: Evidence for signal zymogen and disintegrin-like structures. Biochemistry. 1992;31:6203-6211.

  • 18. Shimokawa K Jia LG Wang XM Fox JW. Expression activation and processing of the recombinant snake venom metalloproteinase proatrolysin E. Arch BiochemBiophys. 1996;335(2):283-294.

  • 19. Fox JW Serano SMT. Structural considerations of the snake venom metalloproteinases key members of the M12 reprolysin family of metalloproteinases.Toxicon. 2005; 45: 969-985;

  • 20. White JM. ADAMs: modulators of cell-cell and cell-matrix interactions. CurrOpin Cell Biol. 2003;15(5):598-606.

  • 21. Mackessy S. Handbook of Venom and Toxins of Reptiles. CRC Press Taylor & Francis Group Boca Raton Florida USA; 2010;P.12-16P. 95-132.

  • 22. Pinto A FM Terra MS Guimares JA Fox JW. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Arch Biochem Biophys. 2007;457(1):41-46.

  • 23. Moura-da-Silva AM Della-Casa MS David AS Assakura MT Butera D Lebrun I Shannon JD Serrano SM Fox JW. Evidence for heterogeneous forms of the snake venom metalloproteinase jararhagin: A factor contributing to snake venom variability. Arch BiochemBiophys. 2003;409(2):395-401.

  • 24. Calvete JJ Juarez P Sanz L. Snake venomics. Strategy and applications.J Mass Spectrom. 2007;42:1405-1414.

  • 25. Ompraba C Chapeaurouge A Kini RM et al. Identification of a novel family of snake venom proteins veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9(4):1882-1893.

  • 26. Weldon CL Mackessy SP. Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis Portoricensis: Dipsadidae). Toxicon. 2010;55:558-569.

  • 27. Georgieva D Seifert J Betzel C et al. Pseudechis australis venomics: adaptation for a defense against microbial pathogens and recruitment of body transferrin. 2011;10(5):2440-2464.

  • 28. Petras D Sanz L Calvette JJ et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J. ProteomeRes. 2011;10:1266-1280.

  • 29. Shimokawa K Shannon JD Jia LG Fox JW. Sequence and biological activity of Catrocollastatin-C: a disintegrin-like/cysteine-rich twodomain protein from Crotalus atrox venom. Arch BiochemBiophys. 1997;343(1):35-43.

  • 30. Kress LF Paroski EA. Enzymatic inactivation of human serum proteinase inhibitors by snake venom proteinase. BiochemBiophys Res Commun. 1978;83:649-656.

  • 31. Zhang D Fox JW Meyer EF et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase atrolysin C (form d). ProcNatlAcadSci USA 1994;91(18):8447-8451.

  • 32. Gutierrez JM Romero M Diaz C Borkow G Ovadia M. Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1995;33:19-29.

  • 33. Rucavado A Lomonte B Ovadia M Gutierrez JM. Local tissue damage induced by BaP1 a metalloproteinase isolated from Bothrops asper (terciopelo) snake venom. ExpMolPathol. 1995;63:186-199.

  • 34. Takeya H Arakawa M Miyata T Iwanaga S Omori-Satoh T. Primary structure of H2-proteinase a non-hemorrhagic metalloproteinase isolated from the venom of the habu snake Trimeresurus flavoviridis. J Biochem. 1989;106:151-157.

  • 35. Wu WB Chang SC Liau MY Huang TF. Purification molecular cloning and mechanism of action of graminelysin I a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J. 2001;357:719-728.

  • 36. Bernardes CP Soares AM de Oliveira F et al. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon. 2008;51:574-584.

  • 37. Cintra AC De Toni LG Sampaio SV et al. Batroxase a new metalloproteinase from B. atrox snake venom with strong fibrinolytic activity. Toxicon. 2012;60(1):70-82.

  • 38. de Toni LGB Menaldo DL Sampaio SV. Inflammatory mediators involved in the paw edema and hyperalgesia induced by Batroxase a metalloproteinase isolated from Bothrops atrox snake venom. Int Immunopharmacol. 2015;28(1):199-207.

  • 39. Achê DC Gomes MS Rodrigues VdeM et al. Biochemical properties of a new PI SVMP from Bothrops pauloensis: inhibition of cell adhesion and angiogenesis. Int J Biol Macromol. 2015;72:445-453.

  • 40. Chen RQ Jin Y Xiong YL et al. A new protein structure of P-II class snake venom metalloproteinase: it comprise metalloproteinase and disintegrin domains. Biochem Biophys Res Commun. 2003;310:182-187.

  • 41. Nikai T Fox JW Sugihara H et al. Primary structure and functional characterization of bilitoxin-1 a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys. 2000;378:6-15.

  • 42. Jeon OH Kim DS. Molecular cloning and functional characterization of a snake venom metalloproteinase.Eur J Biochem. 1999;263:526-533.

  • 43. Camacho E Gutierrez JM Rucavado A et al. Understanding structural and functional aspects of PII snake venom metalloproteinase: Characterization of BlatH1 a hemorrhagic dimeric enzyme from the venom of Bothriechis lateralis. Biochimie. 2014;101:145-155.

  • 44. Oyama E Takahashi H. Purification and characterization of two high molecular mass snake venom metalloproteinase (P-III SVMPs) named SV-PAD-2 and HR-Ele-1 from the venom of Protobothrops elegansi (Sakishima-habu). Toxicon. 2015;103:30-38.

  • 45. Leonardi A Sajevic T Križaj I et al. Structural and biochemical characterization of VaF1 a P-IIIafibrinogenolytic metalloproteinase from Vipera ammodytes ammodytes venom. Biochimie. 2015;109:78-87.

  • 46. Shioi N Nishijima A Terada S. Flavorase a novel non-hemorrhagic metalloproteinase in Protobothrops flavoviridis venom is a target molecule of small serum protein-3. J Biochem. 2015;158(1):37-48.

  • 47. Paine MJ Desmond HP Theakston RD Crampton JM. Purification cloning and molecular characterization of high molecular weight hemorrhagic metalloproteinase jarahagin from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992;267:22869-22876.

  • 48. Sartim MA Costa TR Sampaio SV et al. Moojenactivase a novel procoagulant PIIIdmetalloprotease isolated from Bothrops moojeni snake venom activates coagulation factors II and X and induces tissue factor up-regulation in leukocytes. Arch Toxicol. 2015;DOI10.1007/s00204-015-1533-6. (terciopelo) snake venom. ExpMolPathol. 1995;63:186-199.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 346 227 11
PDF Downloads 173 121 5