Microstructure and Properties of Selected Magnesium-Aluminum Alloys Prepared for SPD Processing Technology

Open access


A growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation) methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.

[1] M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851-865 (2008).

[2] A.A. Luo, Journal of Magnesium and Alloys 1, 2-22, (2013.)

[3] Magnesium Alloys and their Application, K.U. Kainer (Ed.), 2000 Wiley-VCH, Weinheim.

[4] H. Friedrich, S. Schumann, J. Mater. Proces. Tech. 117, 276-281 (2001).

[5] E. Aghion, B. Bronfin, Mater. Sci. Forum 350-351, 19-30 (2000).

[6] ASM specialty Handbook – Magnesium and Magnesium Alloys, M.M. Avedesian, H. Baker (Eds.), 3-84 (1999) ASM International.

[7] H. Baker, Physical properties of magnesium and magnesium alloys, The Dow Chemical Company, Midland (1997).

[8] Magnesium-Alloys and Technology, K.U. Kainer (ed.), 2003 Wiley-VCH, Weinheim, Germany.

[9] L.A. Dobrzański, T. Tański, L. Čížek, J. Madejski, Journal of AMME 32 (2), 203-210 (2009).

[10] D. Kuc, E. Hadasik, I. Schindler, P. Kawulok, R. Śliwa, Archives of Metallurgy and Materials 58 (1), 151-156 (2013).

[11] M. Cieśla, G. Junak, in: METAL 2015 Conf. Proceedings, Ostrava, Tanger, 631-635 (2015).

[12] M. Cieśla, Solid State Phenom. 211, 1662-9779 (2015).

[13] J. Przondziono, W. Walke, E. Hadasik, J. Szala, J. Wieczorek, Metalurgija 52 (2), 243-246 (2013).

[14] S. Rusz, L. Cizek, J. Kedron, S. Tylsar, M. Salajka, J. Dutkiewicz, M. Klos, E. Hadasik, Journal of Trends in the Development of Machinery and Associated Technology 16 (1), 51-54 (2012).

[15] S. Rusz, L. Cizek, S. Tylsar, J. Kedron, M. Salajka, E. Hadasik, T. Donic, Journal of Trends in the Development of Machinery and Associated Technology 16 (1), 55-58 (2012).

[16] T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, Y.B. Xu, Materials Science and Engineering A 360 (1), 345-349 (2003).

[17] S. Ziółkiewicz, M. Gąsiorkiewicz, Obróbka Plastyczna Metali 24 (2), 99-107 (2013).

[18] T. Mikuszewski, Metalurgija 53, 588-590 (2014).

[19] A. Białobrzeski, K. Saja, Archives of Foundry Engineering 11 (3), 17-20 (2011).

[20] T. Al-Samman, Acta Materialia 57, 2229-2242 (2009).

[21] D. Kuc, E. Hadasik, J. Mizera, T. Mikuszewski, Solid State Phenom. 212, 11-14 (2014).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 357 281 22
PDF Downloads 170 134 8