Characteristics of ADI Ductile Cast Iron with Single Addition of 1.56% Ni

Open access


The results of examinations of microstructure and an analysis of its impact on selected mechanical properties of austempered ductile iron (ADI) were presented in the paper. The ADI was produced from the ductile iron containing 1.56% Ni only alloying addition. The effect of the austempering time and temperature on the microstructure and mechanical properties of the examined cast iron was considered. Constant conditions of austenitizing were assumed and six variants of the austempering treatment were adopted. The studyof mechanical properties included a static tensile test, Charpy impact strength test and Brinellhardness measurement.

This work complements the knowledge about alloying additions effect on microstructure and mechanical properties of ADI and focuses on the impact of a single alloying element (Ni).

[1] C. Podrzucki, Problemy produkcji odlewów z żeliwa sferoidalnego ADI. Przegląd Odlewnictwa 10, 260-265 (1996).

[2] Multiple advantages of austempered ductile iron. ADI being chosen over aluminum. Modern Casting 9, 15-16 (1999).

[3] J.F. Janowak, P.A. Morton, A guide to mechanical properties possible by austempered 1,5% Ni-0,3% Mo ductile iron. Transactions AFS, 489-498 (1984).

[4] M. Grech, J.M. Young, Impact properties of a Cu-Ni austempered ductile iron. Cast Metals 1/2, 98,(1988).

[5] A. Kowalski, J. Tybulczuk, Experience of The Foundry Research Institute Krakow in investigation and application of Ni-Cu ADI for castings. 42 Livarsko Strokovno Posvetovanje. Slovenja, Portoroż 23-24 May 2002, (2002).

[6] R.H. Juneja, et al., Austempering ductile iron alloyed with coper and manganese, Foundry 64, (1989).

[7] E. Dorazil, Zwischenstufenumwandeln von Gusseisen mit Kugel-graphit, Giesserei-Praxis 18, 355 (1979).

[8] K.L. Hayrynen, The production of austempered ductile iron (ADI). World Conference of ADI. Livonia, Michigan, USA, (2002).

[9] A. Owhadi, et al., Wear behavior of 1.5 Mn austempered ductile iron, Materials Science and Technology 14, 245 (1998).

[10] M.N. Ahamadabadi, E. Niyama, T. Ohide, Structural control of 1% Mn ADI aided by modeling of microsegregation, Transactions AFS, 269 (1994).

[11] Z. Pirowski, et al., Wpływ mikrododatku boru na zmiany hartowności w żeliwie sferoidalnym z przemianą izotermiczną w odniesieniu do odlewów grubościennych, Journal of Research and Applications in Agricultural Engineering 57 (2), 153-155, (2012).

[12] S. Kluska-Nawarecka, D. Wilk-Kołodziejczyk, K. Regulski, et al., Rough Sets Applied to the Rough Cast System for Steel Castings, Lecture Notes in Artificial Intelligence 6592, 52-61 (2011).

[13] B. Sniezynski, G. Legien, D. Wilk-Kolodziejczyk, et al., Creative Expert System: Result of Inference and Machine Learning Integration, Lecture Notes in Computer Science 9827, 257-271 (2016).

[14] D. Wilk-Kolodziejczyk, B. Mrzyglod, K. Regulski, et al., Influence of process parameters on the properties of austernpered ductile iron (adi) examined with the use of data mining methods, Metalurgija 55 (4), 849-851 (2016).

[15] I. Olejarczyk-Wozenska, H. Adrian, B. Mrzygłód, et al., Numerical modelling of austenite-ferrite transformation in ADI, METAL 2015: 24th International Conference on Metallurgy And Materials, 810-815 (2015).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 184 40
PDF Downloads 135 135 36