Microstructure and Mechanical Characterization of X70 Steel Welded Joints Through Hardness Mapping and Tensile Strength Testing

Open access


In this paper, effects of preheating and type of electrode (E8010 and E8018) on microstructure and mechanical properties of 5L X70 steel welded joints were investigated. The microstructure of joint zone and fracture surface was analyzed by light optical microscope and scanning electron microscope equipped with energy dispersive spectroscopy. Hardness mapping and tensile test were also performed to find the relationship between microstructure and mechanical properties. The results showed a consistency between the hardness variation data and the microstructure of joint zone. Moreover, hardness mapping revealed coarse and fine grain subregions in the heat affected zone which were not detected in the micrographs. The tensile test indicated that the non-preheated sample, welded by cellulosic E8010, had the minimum value in the strength and the ductility of welded steel. The fractography also determined that size and distribution of strengthening phases affected the fracture mode of welded specimens.

[1] S. Hertelé, A. Cosham, P. Roovers, Eng. Struct. 124, 429-441 (2016).

[2] Y. Gu, P. Tian, X. Wang, X. Han, B. Liao, F. Xiao, Mater. Design. 89, 589-596 (2016).

[3] Y. Yang, L. Shi, Z. Xu, H. Lu, X. Chen, X. Wang, Eng. Fract. Mech. 148, 337-349 (2015).

[4] J.W. Sowards, T. Gnäupel-Herold, J.D. McColskey, V.F. Pereira, A.J. Ramirez, Mater. Design. 88, 632-642 (2015).

[5] B. Maamache, M. Bouabdallah, A. Brahimi, Y. Yahmi, B. Cheniti, B. Mehdi, Acta. Metall. Sin. 29, 568-576 (2016).

[6] Z. Zhu, L. Kuzmikuva, H. Li, F. Barbaro, Metall. Mater. Trans. B 45B, 229-235 (2014).

[7] V. Olden, A. Alvaro, O.M. Akselsen, Int. J. Hydrogen Energ. 37, 11474-11486 (2012).

[8] G. Khalaj, M. Khalaj, Int. J. Pres. Ves. Pip. 145, 1-12 (2016).

[9] C. Li, Y. Wang, Y. Chen, J. Mater. Sci. 46, 6424-6431 (2011).

[10] C. Li, Y. Wang, T. Han, B. Han, L. Li, J. Mater. Sci. 46, 727-733 (2011).

[11] H. Pouraliakbar, M. Khalaj, M. Nazerfakhari, G. Khalaj, J. Iron. Steel Res. Int. 22, 446-450 (2015).

[12] Z. Zhu, J. Han, H. Li, Mater. Design, 88, 1326-1333 (2015).

[13] J. Cho, S. Han, C. Lee, Mater. Lett. 180, 157-161 (2016).

[14] F.C. Liu, Z.Y. Ma, Metall. Mater. Trans. A 39A, 2378-2388 (2008).

[15] S.R. Ren, Z.Y. Ma, and L.Q. Chen, Scripta Mater. 56, 69-72 (2007).

[16] H. Ghazanfari, M. Naderi, Acta Metall. Sin. (Engl. Lett.) 26, 635-640 (2013).

[17] H. Ghazanfari, M. Naderi, Int. J. Miner. Metall. Mater. 21, 894-897 (2014).

[18] A. Kavousi Sisi, S.E. Mirsalehi, Sci. Technol. Weld. Joi. 21, 43-52 (2016).

[19] C. Liu, X. Di, C. Chen, X. Guo, Z. Xue, J. Mater. Sci. 50, 5079-5090 (2015).

[20] M. Mosallaee, J. Hydari, S. Ghassemy, A. Mashreghee, Int. J. Pres. Ves. Pip. 111, 75-81 (2013).

[21] S. Matsuda, N. Okumura, Trans. Iron Steel Inst. Jpn. 18, 198-205 (1978).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 372 281 25
PDF Downloads 183 157 13