Experimental and Finite Element Analysis of Asymmetric Rolling of 6061 Aluminum Alloy Using Two-Scale Elasto-Plastic Constitutive Relation

Open access

Abstract

The goal of this work was theoretical and experimental study of micro- and macroscopic mechanical fields of 6061 aluminum alloy induced by the asymmetric rolling process. Two-scale constitutive law was used by implementing an elasto-plastic self-consistent scheme into the Finite Element code (ABAQUS/Explicit). The model was applied to study the asymmetric rolling. Such a deformation process induces heterogeneous mechanical fields that were reproduced by the model thanks to the crystallographic nature of constitutive law used. The studied material was processed, at room temperature, in one rolling pass to 36% reduction. The resulting material modifications were compared with predictions of the two-scale model. Namely, the calculated textures were compared with experimental ones determined by X-ray diffraction. Especially, detailed quantitative analysis of texture variation across the sample thickness was done. The influence of this texture variation on plastic anisotropy was studied. The advantages of asymmetric rolling process over symmetric one were identified. The main benefits are a nearly homogeneous crystallographic texture, reduced rolling normal forces and homogenization of plastic anisotropy through the sample thickness.

[1] H. Gao, G. Chen, , Iron and Steel. 33, 63-66 (1998).

[2] S.H. Lee, G.N. Lee, Int. J. Mech. Sci. 43, 1997-2001 (2001).

[3] J. Sidor, A. Miroux, R. Petrov, L. Kestens, Acta Mater. 56, 2495-2507 (2008).

[4] J.-S. Lu, O.-K. Harrer, W. Schwenzfeier, F.D. Fischer, Int. J. Mech. Sci. 42, 49-61 (2000).

[5] H. Kuramae, H. Sakamoto, H. Morimoto, E. Nakamachi, Procedia Engineering. 10, 2250-2255 (2011).

[6] J. Jiang, Y. Ding, F. Zuo, A. Shan, Scripta Mater. 60, 905-908 (2009).

[7] Z. Li, L. Fu, B. Fu, A. Shan, Mat. Sci. Eng. A. 558, 309-318 (2012).

[8] F. Zuo, J. Jiang, A. Shan, J. Fang. X. Zhang, T. Nonferr. Metal Soc. 18, 774-777 (2008).

[9] J.-Y. Kang, B. Bacroix, H. Reglé, K.H. Oh, H.-C. Lee, Acta Mater. 55, 4935-4946 (2007).

[10] S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, E. Rauch, F. Montheillet, M. Wroński, Arch. Metall. Mater. 54, 89-102 (2009).

[11] F. Zhang, G. Vincent, Y.H. Sha, L. Zuo, J.J. Fundenberger, C. Esling, Scripta Mater. 50, 1011-1015 (2004).

[12] S. Ucuncuoglu, A. Ekerim, G.O. Secgin, O. Duygulu, Journal of Magnesium and Alloys, 2, 92-98 (2014).

[13] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, J. Alloy Compd. 457, 408-412 (2008).

[14] M. Wroński, K. Wierzbanowski, M. Wrobel, S. Wronski, B. Bacroix, Met. Mater. Int. 21, 805-814 (2015).

[15] F. Simoes, R. Alves de Sousa, J. Gracio, F. Barlat, J. Whan Yoon, Int. J. Mech. Sci. 50, 1372–1380 (2008).

[16] H. Jin, D.J. Lloyd, Mat. Sci. Eng. A. 465, 267-273 (2007).

[17] J.-K. Kim, Y.-K. Jee, M.-Y. Huh, J. Mater. Sci. 39, 5365-5369 (2004).

[18] K.-H. Kim, D. N. Lee, Acta Mater. 49, 2583-2595 (2001).

[19] E. Nakamachi, H. Kuramae, H. Sakamoto, H. Morimoto, Int. J. Mech. Sci. 52, 146-157 (2010).

[20] S.K. Kim, J.H. Ryu, K.H. Kim, D.N. Lee, Mater. Sci. Res. Int. 8, 20-25 (2002).

[21] M. Wronski, K. Wierzbanowski, S. Wronski, B. Bacroix, P. Lipinski, Int. J. Mech. Sci. 87, 258-267 (2014).

[22] R. Hill, J. Mech. Phys. Solids, 13, 213-222 (1965).

[23] T. Leffers, Phys. stat. solidi. 25, 337-344 (1968).

[24] M. Berveiller, A. Zaoui, A., J. Mech. Phys. Solids. 26, 325-344 (1979).

[25] K. Wierzbanowski, A. Baczmanski, P. Lipinski, A. Lodini, Arch. Metall. Mater. 52, 77-86 (2007).

[26] K. Wierzbanowski, J. Jura, W.G. Haije, R.B. Helmholdt, Cryst. Res. Technol. 27, 513-522 (1992).

[27] K. Wierzbanowski, M. Wroński, T. Leffers, Crit. Rev. Solid State. 39, 391-422 (2014).

[28] K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux, O. Castelnau, Arch. Metall. 44, 183-201 (1999).

[29] S.A.A. Akbari Mousavi, S.M. Ebrahimi, R. Madoliat, J. Mater. Process. Technol. 187-188, 725-729 (2007).

[30] X. Liu, X. Shi, S. Li, J. Xu G. Wang, J. Iron Steel Res. Int. 14, 22-26 (2007).

[31] S. Wronski, K. Wierzbanowski, M. Wronski, B. Bacroix, Arch. Metall. Mater. 59, 585-591 (2014).

[32] H.D. Hibbitt, B.I. Karlson, D. Sorensen, ABAQUS Example Problems Manual. Rolling of Thick Plates, pp.485-502, Dassault Systèmes, Paris, 2004

[33] S. Wronski, B. Ghilianu, T. Chauveau, B. Bacroix, Mater. Charact. 62, 22-34 (2011).

[34] S. Wronski, B. Bacroix, Acta Mater. 76, 404-412 (2014).

[35] H.J. Bunge, Texture Analysis in Material Science, p. 3-41, 1982 Butterworths, London

[36] J. Tarasiuk, K. Wierzbanowski, A. Baczmański, Cryst. Res. Technol. 33, 101-118 (1998).

[37] P.P. Gudur, M.A. Salunkhe, U.S. Dixit, Int. J. Mech. Sci. 50, 315-327 (2008).

[38] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Rev. Metall. – Paris. 94, 1467-1474 (1997).

[39] A. Baczmański, A. Tidu, P. Lipinski, M. Humbert, K. Wierzbanowski, Mater. Sci. Forum. 524-525, 235-240 (2006).

[40] A. Uniwersał, M. Wróbel, K. Wierzbanowski, S. Wroński, M. Wroński, I. Kalemba-Rec, T. Sak, B. Bacroix, Mater. Charact. 118, 575-583 (2016).

[41] P. Markowski, MSc Thesis, AGH University of Science and Technology, Kraków, Poland, 2012

[42] J. Tarasiuk, K. Wierzbanowski, Phil. Mag. A. 73, 1083-1091 (1996).

[43] M. Arminjon, B. Bacroix, Acta Mech. 88, 219-243 (1991).

[44] S. Wronski, M. Wrobel, A. Baczmanski, K. Wierzbanowski, Mater. Charact. 77, 116-126 (2013)

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 257 19
PDF Downloads 125 115 13